
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2013

The constant-pressure gas-driven radial
displacement and viscous fingering instability in a
finite liquid drop in a Hele-Shaw cell
Andrew Ryan White
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
White, Andrew Ryan, "The constant-pressure gas-driven radial displacement and viscous fingering instability in a finite liquid drop in a
Hele-Shaw cell" (2013). Graduate Theses and Dissertations. 13373.
https://lib.dr.iastate.edu/etd/13373

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Fetd%2F13373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/13373?utm_source=lib.dr.iastate.edu%2Fetd%2F13373&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

The constant-pressure gas-driven radial displacement and viscous fingering

instability in a finite liquid drop in a Hele-Shaw cell

by

Andrew R. White

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Engineering Mechanics

Program of Study Committee:

Thomas Ward III, Major Professor

Paul Durbin

Thomas Rudolphi

Iowa State University

Ames, Iowa

2013

Copyright © Andrew R. White, 2013. All rights reserved.



www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my mother and father for all the love and support

they have provided me through both the best and worst of times.



www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1. GENERAL INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

CHAPTER 2. GAS DRIVEN DISPLACEMENT OF A LIQUID IN A PAR-

TIALLY FILLED RADIAL HELE-SHAW CELL . . . . . . . . . . . . . . . . 6

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Volume conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Displacement rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Experiments: materials and procedure . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Experiments: results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Qualitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.2 Quantitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



www.manaraa.com

iv

CHAPTER 3. CO2 SEQUESTRATION IN A RADIAL HELE-SHAW CELL

VIA AN INTERFACIAL CHEMICAL REACTION . . . . . . . . . . . . . . 27

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Interfacial chemical reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Characteristic rate relationships and film thickness equation . . . . . . . 33

3.4 Experiments: materials and procedure . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Experiments: results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Qualitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.2 Transient gas area and film thickness . . . . . . . . . . . . . . . . . . . . . 40

3.5.3 Quasi-equilibrium film thickness . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.4 Gas area expansion and film formation rates . . . . . . . . . . . . . . . . . 42

3.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

CHAPTER 4. THE CONSTANT-PRESSURE GAS-DRIVEN RADIAL DIS-

PLACEMENT OF A FINITE NON-NEWTONIAN LIQUID DROP . . . 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Area measurement using an integral method . . . . . . . . . . . . . . . . . 53

4.2.2 Viscous fingering quantification . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.3 Gas expansion rate and dimensionless numbers . . . . . . . . . . . . . . . 55

4.2.4 Residual film estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Materials and procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Setup and experimental procedure . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



www.manaraa.com

v

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

CHAPTER 5. GENERAL CONCLUSION AND FUTURE WORK . . . . . 84

5.1 General conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Potential flow analysis for stable radial displacement . . . . . . . . . . . . 85

5.2.2 Pulsed-pressure displacement . . . . . . . . . . . . . . . . . . . . . . . . . . 87

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



www.manaraa.com

vi

LIST OF FIGURES

Figure 2.1 Problem schematic for chapter 2 . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.2 Experimental images at tburst . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.3 Semilog plots of normalized Agas, Atot and h̄ versus elapsed time . . . . 19

Figure 2.4 Log-log plots of Re∗ = ωb2/νL where ω is measured using either the Agas

or Atot expansion rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.5 Log-log plots of normalized tburst and h̄ . . . . . . . . . . . . . . . . . . . 22

Figure 3.1 Problem schematic for chapter 3 . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.3 Experimental images at tburst . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.4 Semilog plots of the normalized Agas versus elapsed time with and with-

out Ca(OH)2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.5 Semilog plot of the normalized film thickness versus elapsed time . . . . 42

Figure 3.6 Plot of h∞ versus pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.7 Plots of ωgas and ωfilm versus pressure . . . . . . . . . . . . . . . . . . . 44

Figure 4.1 Problem schematic for chapter 4 . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 4.2 Dynamic viscosity versus strain rate data . . . . . . . . . . . . . . . . . . 58

Figure 4.3 Examples of the image analysis process . . . . . . . . . . . . . . . . . . . 60

Figure 4.4 Experimental interface traces for 50 µm experiments . . . . . . . . . . . 62

Figure 4.5 Experimental interface traces for 100 µm experiments . . . . . . . . . . 63

Figure 4.6 Experimental interface traces for 250 µm experiments . . . . . . . . . . 64

Figure 4.7 Traces of the inner interface over time for a Newtonian and shear-

thinning experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



www.manaraa.com

vii

Figure 4.8 Log-log plot of the normalized bursting time . . . . . . . . . . . . . . . . 66

Figure 4.9 Semilog plots of normalized Agas versus elasped time . . . . . . . . . . . 67

Figure 4.10 Log-log plot of Re∗ = ρωgasb
2/µo . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 4.11 Plot of the normalized film thickness versus normalized elapsed time . . 69

Figure 4.12 Plot of normalized h∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 4.13 Plots of the fingering magnitudes versus elapsed time . . . . . . . . . . . 71

Figure 4.14 Comparisons of the tburst and ts time scales . . . . . . . . . . . . . . . . . 72

Figure 4.15 Experimental interface traces at elapsed time ts . . . . . . . . . . . . . . 73

Figure 4.16 Plots of the maximum stable gas areas . . . . . . . . . . . . . . . . . . . . 74

Figure 4.17 Plots of the instability growth rates . . . . . . . . . . . . . . . . . . . . . 75

Figure 5.1 Plots of ts versus frequency for Newtonian and shear-thinning experiments 87



www.manaraa.com

viii

ACKNOWLEDGEMENTS

I would like to express my sincerest gratitude to my advisor Dr. Thomas Ward for all of the

support and direction he provided me over the past several years beginning with his lectures on

fluid dynamics in the fall of 2008; without him this would not have been possible. I would like

to thank the Department of Mechanical and Aerospace Engineering at North Carolina State

University for providing me a foundation in engineering on which to build, and I would like

to thank the Department of Aerospace Engineering at Iowa State University for supporting

the remainder of my Master of Science degree. I also wish to thank Dr. Paul Durbin and Dr.

Thomas Rudolphi for being on my program of study committee and for the assistance they

provided in completing this thesis.



www.manaraa.com

ix

ABSTRACT

The displacement of a liquid by a less viscous fluid in a porous medium or other small

geometry often results in an interfacial instability that takes the form of ”fingers” or ”tongues.”

Typically referred to as viscous fingering or the Saffman-Taylor instability, this instability has

direct relevance to many industries. For example in oil recovery nearby water can enter the oil

reservoir and hinder yields, while some enhanced oil recovery techniques use fluids to displace

oil and become less effective as the instability appears. This instability is also detrimental to

gas-assisted injection molding and some embossing processes, while it could produce desirable

effects in some industries such as patterning thin polymer films. Unfortunately the majority of

studies of the two-phase displacement problem introduce the displacing fluid at a constant flow

rate as opposed to a constant pressure. In this thesis a finite liquid drop is displaced radially

by a gas at constant pressure in a Hele-Shaw cell. A Hele-Shaw cell consists of two parallel

plates with a gap spacing much smaller than the length and width, effectively producing a

two-dimensional flow. The problem is investigated in three separate studies: the displacement

of glycerol-water mixtures by air, the displacement of aqueous Ca(OH)2 by CO2, and the

displacement of mineral oil with dissolved polyisobutylene, a shear-thinning liquid, by air.

Experimental videos are analyzed to track the expansion of the gas phase and the development

of the instability, and a simple conservation of volume approach is used to estimate the residual

film produced by the displacement. Finally a novel quantity is defined to justly compare very

different instability regimes such as smooth pedal-like fingers (primarily a Newtonian effect) and

fractal dendritic fingers (primarily a shear-thinning effect) in order to quantify the instability

and its growth.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

When a less viscous fluid displaces a more viscous fluid the interface often becomes unstable.

Typically called viscous fingering or the Saffman-Taylor instability, the instability takes the

form of ”fingers” or ”tongues” of the less viscous phase penetrating the more viscous phase

and is often associated with adverse effects such as inefficient displacement. This two-phase

displacement problem occurs regularly in porous media and in other small geometries in a

number of industries. For example the instability can directly impact oil recovery(1; 2). Also

some fluid-assisted injection molding technologies are concerned with the two-phase instability

(3; 4), and viscous fingering can occur in hot embossing and other soft lithography process

(5; 6). The viscous fingering problem has been studied extensively dating back to the 1950s in

Hele-Shaw cells (see: Literature review) . A Hele-Shaw cell consists of two flat parallel plates

where the gap between them is much smaller than the length and width of the plates. This

allows for good visualization of the experiments and effectively produces a two-dimensional flow.

Viscous fingering problems have been studied in both linear and radial geometries with a wide

range of fluids. Displacing fluids have included gases such as air and CO2 and liquids such as

water and glycerin, while the displaced fluids have included liquids from oils to non-Newtonian

liquid crystals. The majority of these viscous fingering studies have used constant flow rates

for the displacing phase which makes the mathematical analysis more straight forward.

In the following chapters the viscous fingering problem is studied in a radial Hele-Shaw cell

where the displacing phase is a gas at constant pressure. The constant pressure problem is

fundamentally different from the constant flow rate problem, a key difference being the average

velocity of the interface is no longer constant. Additionally in this thesis the constant pressure
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gas displaces a finite volume drop of liquid. This means at some elapsed time the gas phase

bursts out of the liquid drop which is a phenomenon only studied recently (7; 8). The finite

volume also allows for an estimation of the residual film resulting from the displacement process

which has only been done recently (7; 8; 9).

While the constant pressure and finite volume viscous fingering problem will be presented

in the next chapters with different fluids and motivations, each will use similar analytical tools.

In general the rate of displacement of the liquid by the gas will be examined as will the residual

film thickness. Additionally, since performing the experiments discussed in chapters 2 and 3,

improvements have been made in the image analysis which will allow for a new quantitative

measure of the instability in chapter 4. Unfortunately the constant pressure problem makes

the application of analytical analyses difficult and so many of the results will rely on empirical

relationships.

1.2 Thesis organization

This thesis contains two previously published papers plus some new results. The following

section will provide a brief literature review highlighting a number of the major milestones in

the paradigm’s history. Chapters 2 and 3 will each contain one of the previously published

papers in its entirety with its own introduction, analysis, procedure, results, discussion and

conclusion. Chapter 4 will present new results on viscous fingering in shear-thinning liquids

and will contain its own introduction, analysis, procedure, results, discussion and conslusion.

A general conclusion as well as a discussion of some future work will be presented in chapter 5

followed by a bibliography for the entire thesis.

1.3 Literature review

The viscous fingering problem has been recognized for many years by the oil industry where,

for example, the extraction of oil can cause nearby water to enter the oil reservoir, or fluids

can be used to displace oil to aid in oil recovery. Some of the first analyses of the displacement

problem were published by Muskat and Wyckoff in 1935 (1) and then Arthur in 1944 (2) to
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understand how the instability affects oil recovery. Later in 1950 the first lab experiments

showing viscous fingering were performed by Lewis (10) to support the first stability analysis

of the fingering problem performed by Taylor in 1950 (11). The experimental apparatus used

by Lewis consisted of two parallel plates with some gap spacing that is considerably smaller

than the length and width of the plates. This apparatus, commonly known as a Hele-Shaw

cell in honor of H.S. Hele-Shaw (12), has since become the standard for investigating this two-

phase displacement problem. A convenient aspect of Hele-Shaw flow is that the lubrication

approximation can be applied. Then when the flow is fully developed and the fluids of interest

are incompressible the gap-averaged velocity reduces to Darcy’s law

ū1 = −
b2

12µ

dp

dx1
(1.1)

where b is the gap and µ is the dynamic viscosity, making the experiment analogous to flow

in a porous medium with permeability b2

12 . Within six months of each other between 1958 and

1959 Saffman and Taylor (13) and then Chuoke et al (14) performed nearly identically linear

stability analyses on the fingering problem beginning with the velocity potential from Darcy’s

law. While the viscous fingering instability is called the Saffman-Taylor instability in many

textbooks and papers in honor of their work published in 1958, there is some debate about to

whom the instability should be attributed (15).

Paterson in 1981 (16) performed the first radial viscous fingering experiments in a Hele-

Shaw cell, providing a more realistic view of how a gas bubble would behave in an oil reservoir

accompanied by a linear stability analysis of the radial problem. This approach to the viscous

fingering problem is significant because it eliminates wall effects whereas previous linear studies

could only accurately analyze fingers away from the walls. From 1980 onward work on viscous

fingering has flourished. Advances in the stability analysis of the linear problem were made by

Park and Homsy (17; 18) in 1984 where improvements were made on the interfacial boundary

condition.

Nittmann et al in 1985 published the first experiments where a non-Newtonian shear-

thinning liquid was used (19). Their results are significant because for the first time fractal fin-

gering patterns were observed due to the shear-thinning effects. Daccord and Nittmann a year
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later made one of the first analyses of this non-Newtonian fingering instability by using a fractal

dimension (20). Afterward many studies using shear-thinning and other non-Newtonian liq-

uids have been performed. One of the few studies of a constant pressure driven non-Newtonian

system was done in 1987 by Buka et al (21; 22). In their work the radial displacement of liquid

crystals was investigated and an attempt at a linear stability analysis for the constant-pressure

system was made. While their experimental data agrees well with their stability analysis they

use Darcy’s law to determine the velocity of the liquid-gas interface which may not be valid.

As will be shown in this thesis the interface velocity is not constant for the radial constant-

pressure problem and therefore the flow cannot be considered fully developed. Another of the

few constant pressure non-Newtonian studies was performed by Yamamoto in 2001 a linear

Hele-Shaw cell where an analysis of the fingering patterns and finger development was studied

(23). Some stunning numerical work on the gas-driven displacement of shear-thinning liquids

has been performed by Fast et al in 2001 and 2004 (24; 25) however they are considering a

fixed capillary number i.e. fixed velocity which again is different from the constant pressure

study presented in this thesis. For an in-depth review of the viscous fingering problem up to

1995 refer to work by McCloud (26).

In the past decade the area of viscous fingering has continued to grow. New work on viscous

fingering with an interfacial chemical reaction, where the displacement is driven by a constant

flow rate or the reaction itself, has been performed by De Wit and others (27; 28; 29; 30). Other

work continues to refine the analyses of the constant flow rate problem in radial geometry (31).

Carrillo et al studied displacement in a rotating Hele-Shaw cell (9). Their study used a finite

liquid volume which allowed for a measure of the film thickness by simple mass conservation.

In papers by Ward and White in 2011 (7) and White and Ward in 2012 (8) the use of a finite

liquid drop was also used and for the first time the bursting of the gas phase out of the liquid

drop was analyzed. Also in (8) the exponential increase in the displaced volume due to constant

pressure injection was for the first time shown with and without a fingering instability. These

two papers are shown in their entirety in chapters 2 and 3. Recently Dallaston et al have been

working on numerical solutions to the finite volume problem, however the bursting phenomenon

is yet to be achieved numerically (32).
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Recently the research trend has focused on altering the geometry in an attempt to limit

or prevent the instability from occuring. Techniques such as using elastic plates in a Hele-

Shaw cell (33) and introducing gradients in the gap height (34) have been shown to limit the

instability. A method for suppressing the instability by using a pulsed pressure injection will

be described in the future work section of this thesis.
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CHAPTER 2. GAS DRIVEN DISPLACEMENT OF A LIQUID IN A

PARTIALLY FILLED RADIAL HELE-SHAW CELL

A paper published in Physical Review E1

Thomas Ward2’3, Andrew R. White4

2.1 Abstract

The displacement of liquids from confined geometries by using a gas phase is a problem

that is relevant to many technologies. Efficient removal of the liquid phase is achieved when

an extremely thin residual fluid film is produced as it is displaced. Here the dynamics of air,

at constant pressure, displacing a glycerol-water drop in a radial Hele-Shaw cell is studied

in this context at low Reynolds numbers. Empirically derived expressions relating the input

parameters (fluid viscosity, pressure and drop volume) to characteristic gas flow and liquid

displacement rates, and the steady state film thickness, are proposed and compared with ex-

periments. The experiments consist of measuring cross sectional areas of the penetrating gas

(air) and displaced liquid using glycerol-water mixtures with viscosities ranging O (1-100) cSt

and with inlet pressures ranging 3.5-10.5 kPa at gap spacings of 50-100 µm. We estimate that

the system produces residual film thicknesses in the range of 5-95 µm.

1T. Ward, A. R. White. Gas-driven displacement of a liquid in a partially filled radial Hele-Shaw cell. Phys.
Rev. E 83, (2011)

2Assistant professor, Department of Mechanical and Aerospace Engineering, North Carolina State University
3Author for correspondence: thomasw@iastate.edu
4Undergraduate student, Department of Mechanical and Aerospace Engineering, North Carolina State

University
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2.2 Introduction

The displacement of a viscous fluid phase by a gas phase has been of interest to academics

and industries for many years. There are several emerging and existing technologies where

determining operating conditions that result in the efficient displacement of the more viscous

phase is a desired outcome such as enhanced oil recovery processes that utilize CO2 gas (35).

Other relevant technologies include the evaporation (36), or cooling (37) of a liquid phase by

the penetrating gas phase, so that it may be useful in a microgravity environment where, for

example, processes involving buoyancy driven displacement, such as boiling, are difficult to

engineer (38; 39). In each of these examples the fundamental question is how to efficiently

displace liquids in small geometries by using a less viscous gas phase. In this manuscript a

radial Hele-Shaw cell geometry with gap spacing, b, less than the capillary length `c =
√
γ/ρLg

(where γ is the liquid-solid surface tension in air, ρL is the liquid phase density and g the

gravitational acceleration constant) is used to experimentally study the dynamic penetration

of a gas injected at a constant pressure into a finite volume of a viscous liquid, and to measure

the residual thin film prior to bursting, i.e. break-though of the gas phase, at time tend. The

usual Saffman-Taylor fingering instability (13) occurs during the penetration of the gas into the

liquid but the details of the fingering are not studied here. Instead we focus on the measurement

of thin films and penetration rates of a less viscous fluid into a more viscous one in a radial

Hele-Shaw cell geometry at low Reynolds number.

The desired experimental result is the displacement of a more viscous fluid by a less vis-

cous fluid in a confined geometry where transport occurs in only the radial direction at the

penetrating gas-liquid interface. But in practice this is never observed due to the formation

of films of the more viscous fluid. Thick films can result in little radial displacement that can

later develop into large droplets on the substrates where the maximum drop height is on the

order of the capillary length (40). In this manuscript it is assumed that the bursting time,

tend, is much shorter than the time required to produce a sufficient number of drops on the

order of the gap spacing b (according to (40) this can take days for molecular scale films, in our

experiments we typically observed droplet formation after bursting) and the film that results
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from the penetrating gas is assumed to be steady.

There is much literature on the subject of thin film formation by penetration of a viscous

fluid phase with a less viscous one (26; 41; 42; 43; 44; 45) and our discussion of these previous

studies is to point out their similar conclusions. In general, all theories and experiments suggest

that steady film thicknesses always scale like h∞ = C0Ca
∗n where Ca∗ = UµL/γ (here and

throughout the manuscript asterisks ⋅∗ denote a dimensionless variable) is the capillary number

based on a steady velocity U and liquid viscosity µL. The steady film thickness is h∞, and the

power n and the coefficient C0 are determined for a systems geometry, and range of capillary

numbers. For the film that forms when a bubble penetrates liquid in a tube the power is n = 2/3

for capillary numbers Ca∗ < 1× 10−3 (64); the exponent power is slightly smaller at n = 1/2 for

small capillary numbers 1 × 10−3 < Ca∗ < 1 × 10−2 (46; 47; 48) and for Ca∗ ≥ 1 an asymptotic

limit of h∞ is approached (47). A power of n = 2/3 was also determined for the problem of

thin film formation due to displacement of a more viscous fluid by a less viscous fluid in a two

dimensional geometry (17; 49; 50).

indent It is more difficult to develop similar expressions relating the capillary number and

film thickness for the problem of film formation due to fluid displacement in a radial Hele-

Shaw geometry because the definition for a steady velocity is not easily accessible. Therefore,

most previous Hele-Shaw studies in radial geometries focused on the Saffman-Taylor instability

since a radial geometry allowed analysis of the moving front without interference from sidewalls

(13; 15; 16; 18; 31; 51).

In 1999, Carrillo et al (9), through a combination of analysis and experimentation, studied

fluid displacement driven by axial rotation in a radial Hele-Shaw geometry in the limit of

low Reynolds and Rossby numbers. A study combining experiments and analysis of a similar

system and for a wide range of rotation rates was performed in 2006, by Álvarez-Lacalle et

al, (52). In the inaugural studies of the axial rotation of a radial Hele-Shaw cell performed

by Carillo et al, there were two conditions proposed: 1) a pre-wet Hele-Shaw cell with a drop

placed in the center and 2) a dry Hele-Shaw cell with all other conditions the same as the

first. Their problem was unique because the authors were able to avoid the usual fingering

instability by using rotation to generate centrifugal acceleration to displace the liquid phase,
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Figure 2.1 Top and side view of problem schematic and experimental setup. The top view

shows the initial drop configuration at time t = 0 and the proposed configuration

at later times where a typical fingering instability develops in the azimuthal di-

rection. The radial distance measured from the center to the inner air gas inter-

face, a1, is assumed to be the sum of an average component that is independent

of the azimuthal direction and an azimuthally symmetric disturbance radius, i.e.

a1(θ, t) = ā1(t)+ε(θ, t). The side view shows the proposed configuration for the top

and bottom films and the average radial velocity profile ū that is only a function of

the radial distance, r.
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which subsequently syphoned the less viscous phase fluid (air) into the Hele-Shaw cell in their

experiments. The ability to measure film thickness was possible in their system because the

authors considered the displacement of a finite volume of liquid, denoted here as Vliq. The

finite volume allows tracking of the outer and inner annular liquid radii, then with knowledge

of the initial radius the authors determine a steady film thickness where they show that the

residual film were less than 10% of the gap spacing. Note that in Carrillo et al (9) an empirical

capillary number was developed and we seek to do the same. We also form transport equations

and develop expressions for displacements rates and film thickness based on the cross sectional

areas (penetrating gas and total) for the problem of a viscous fluid being displaced by a pressure-

driven less viscous one by developing empirical correlations based, in part, on the analysis of

(9).

In the next section the problem description and cross sectional area evolution equations are

discussed. This is followed by an explanation of the experiments, and details of the procedure.

Then the experiments and results are analyzed qualitatively and quantitatively to describe data

trends. In the last section we conclude with some remarks on the results and possible future

experiments.

2.3 Analysis

The purpose of this section is to develop expressions for the film thickness resulting from

gas driven displacement of a partially-liquid filled region in a radial Hele-Shaw cell by using

average displacement. To develop this equation we assume that the displaced liquid and gas

phase liquid forms a steady thin-film as it is displaced for the conserved volumes. Empirical

correlations for the rate of displacement of the inner and outer cross sectional areas are also

introduced in the subsections that follow.

We begin with a discussion on the relative inner and outer annular radii a1 and a2, respec-

tively, where the inner gas phase displaces the outer liquid phase fluid. We assume that the

annular outer radius is simply a function of time, a2(t), since the annular liquid is bounded

by air. The inner gas creates a Saffman-Taylor instability as it penetrates the liquid phase,

and for large amplitude instabilities, where a1 is on the order of a2, the approximation that
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a2 is only a function of time will not hold. But it is observed to be accurate for the range of

parameters presented in this study. We also only consider average gas phase radius ā1(t) in

the analysis by assuming that the gas phase radius is the sum of a uniform-average radius and

a linear azimuthal disturbance a1(θ, t) = ā1(t) + ε(θ, t) (31), where the disturbance is periodic

in θ and possess azimuthal symmetry such that ε(+θ, t) = ε(−θ, t) on some domain θ ∈ [−π,π].

Using this information we now consider an initially cylindrical-viscous Newtonian droplet,

of radius a2(0), concentrically confined between two parallel circular plates at a distance b

apart where b ≪ `c (see Fig. 2.1 for problem illustration) or equivalently the Bond number

Bo∗ = (b/`c)
2 ≪ 1. At time t > 0 a gas is injected into the center of the parallel plates at a

constant pressure Pgas where the gage pressure is written as ∆P = Pgas −Patm with Patm equal

to ambient atmospheric pressure. The injection pressure is assumed low i.e. ∆P /Patm ≪ 1 so

that the gas density and temperature are both considered constant throughout the displacement

process (53). It is also assumed that surface tension is negligible where ∆P > γ/b. At time

tend the drop bursts resulting in rupture of the gas-liquid interface. The liquid properties of

viscosity µL, density ρL, and subsequently the kinematic viscosity denoted νL = µL/ρL, along

with the surface tension at the gas-liquid interface, γ, are used for normalization throughout

the manuscript and their values are assumed to remain constant for a given experimental setup.

2.3.1 Volume conservation

The gas phase average radius, ā1(t), is difficult to estimate from experimental data because

of the Saffman-Taylor instability (13). So we instead rely on volume conservation to develop

expressions for the transient cross sectional area of the gas Agas = ∫
Agas

dA (with dA = r dr dθ

a differential area element), which will allow for direct comparison between theory and exper-

iments where in the experiments Agas = ∑
i
Agasi where Agasi is an area element based on an

image pixel, i. In general, values for the transient gas phase volume, Vgas, depend on the film

that is deposited on the top and bottom walls as the liquid is displaced, where the distance

measured from the bottom wall to the lower and upper portion of the gas phase are denoted

as ht and hb respectively (see Fig. 2.1 for description) and may not be spatially uniform.

But the Bond number is considered small in the problem statement so the variations in the
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top and bottom film are negligible in this limit and ht = hb. Dividing the gas volume, Vgas,

by the gas area, Agas, yields an average gas layer thickness
Vgas
Agas

= b − h̄, where h̄ is the (top

and bottom) average-radial liquid film thickness spanning the gas region. The liquid volume

Vliq = πa2
2(0)b is constant with no simple expression for the area Aliq = ∫

Aliq

dA. The total

volume, Vtot = Vgas + Vliq, is equal to Atot(t)b where we define the change in total volume as

being equal to the gas volume ∆Vtot(t) = Vtot − Vliq = Atotb − πa
2
2(0)b = Vgas where we consider

all cross sectional areas to be uniform in the z-direction, and also assume a similar relationship

between differential and image pixel based expressions for the total area as there is for the gas

area Agas. Note that the gas area and change in total area also share the same initial condition

Agas(0) = ∆Atot(0) = 0.

The expression relating the change in total volume with the gas volume may be re-written

as ∆Atotb = Agas(b− h̄) where ∆Atot and Agas differ by a constant b−h̄
b when considering steady

averaged-films i.e. dh̄
dt = 0. A steady film assumption is not physically possible at early times

since the total film thickness value is initially equivalent to the plate separation distance. But

after a sufficient amount of elapsed time the average film thickness in the region spanning the

gas phase is given by,

h̄

b
= 1 −

∆Atot
Agas

, (2.1)

where h̄ is analogous to 2h∞, the value used in the traditional liquid film measurement problems.

Also, this particular result is analogous to the one derived in (9) for a finite volume of fluid

displaced in an initially dry rotating Hele-Shaw cell.

2.3.2 Displacement rates

For the gas phase area we assume an empirical relationship for the expansion rate of the form

Ȧgas = ωAgas (dots denote derivatives with respect to time), and subsequently ∆Ȧtot = ω∆Atot,

due to volume conservation. These expressions are based on experimental observations and

(9). Integration of these equations, with the initial conditions Agas(0) = ∆Atot(0) = 0 and

Ȧgas
Agas

= ∆Ȧtot
∆Atot

= ω, for t > 0, results in expressions for the transient cross sectional areas,
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Agas(t) = Cgas (e
ωt
− 1) , and (2.2a)

∆Atot(t) = Ctot (e
ωt
− 1) . (2.2b)

To determine an expression for ω we analyze the dimensionless momentum conservation

equation Re∗(u∗t∗ + u∗ ⋅∇∗u∗) = ∇∗ ⋅ σ∗ using 1/ω, b and ωb for the time, length and velocity

scales respectively, and µLω for the stress scale σ with σ = −P I + τ where τ = µL[∇v +∇vT ]

is the viscous stress tensor and I is the identity tensor. In the limit Re∗ = ωb2

νL
≪ 1 we propose

that ω ∝ ∆P /µL based on dimensional analysis that the fluid is driven by a gas at constant

pressure.

Developing empirical relationships for the coefficients, Cgas and Ctot, and ω, are not straight-

forward since each depends on the variables µL and ∆P and possibly b. Therefore, the main

focus on the gas area and the total area rate equations is to determine if the relationship for

the characteristic rate ω ∝ ∆P /µL is accurate within our range of experimental parameters. A

more general empirical relationship for ω will be used for comparison with experiments and is

a power law of the form,

ω = Cω (Nω
∆P

µL
)

m

(2.3)

where m is to be experimentally determined. Values of m in the vicinity of unity would reinforce

the validity of the main assumptions in this radial flow model.

For the total film thickness an empirical relationship is derived by considering the generic

capillary number Ca∗ = vcharµL/γ. Using this definition with characteristic velocity vchar = ωb

would yield a dimensionless group that is independent of viscosity for m = 1. A more precise

velocity for the inner annular region is derived by considering the first two non-zero terms in

the Taylor expansion of the average gas displacement written in terms of the transient area [Eq.

(2.2a)] yielding the expression ā1(t)
√
π =

√
Agas ≈

√
ωt +O(ωt)2. Ignoring higher order terms,

O(ωt)2, in the expansion suggests that the coefficient for the average velocity and average

acceleration are both proportional to
√
ω at early elapsed time. Inserting this expression into

the capillary number suggest a numerator that scales like Ca∗ ∝ µL
√
ω =

√
µL∆P . We use
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this result to propose an empirical relationship for the film thickness in terms of the viscosity

and pressure of the form,

h̄

b
= Ch̄ (Nh̄µL∆P )

n (2.4)

where the normalization constant is proportional to the surface tension i.e. Nh̄ ∝ γ. The

power n is to be determined experimentally where measured values of 2n in the vicinity of 0.50

would suggest the reasoning used to develop the empirical correlation is valid. A two term

power law, in µ and ∆P , would be a much better choice but determining the separate powers

from experimental data would be difficult given that we can essentially only measure the cross

sectional areas, Agas and Atot.

The functional dependence with ∆P and µL that has been proposed for ω and h̄/b are each

normalized by Nω =

√
ρLb3

γ and Nh̄ =
√

b
ρLγ3 , respectively, determined by using dimensional

analysis. Experiments are performed to determine the constants and the exponential powers

for these expressions.

2.4 Experiments: materials and procedure

A Hele-Shaw cell was created using two circular acrylic plates with a diameter of 100 mm

(4 in.) and uniform thickness of approximately 3.2 mm (1/8 in.) set 50, 75 or 100 µm apart

on an acrylic stand. Plastic shims (AccuTrex) were placed between the plates to provide the

desired gap spacing. In order to insert air into the cell a standard 8-32NC thread was tapped

in the center of one plate and a plastic pipe fitting (Cole Parmer) with an inner diameter of 2.4

mm (3/32 in.) was inserted. Air pressure was controlled using a pressure transducer (Marsh

Bellofram) and a function generator (Agilent) to provide a step function. Current, I, from the

function generator in the range of 4.8 < I < 10.4 mA was supplied to the transducer to yield

pressure outputs of ∆P = 3.5,7.0 or 10.5 kPa (0.5,1.0 or 1.5 psig). There was no observable

flexing of the plates used to form the Hele-Shaw cell when tested at these low pressures (less

than 15% of 1 atmosphere). An air compressor was used to fill a storage tank to provide

pressurized air for the experiments when necessary, and was connected to the transducer with
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tubing that had an inner diameter of 6.4 mm (1/4 in.). Glycerol-water mixtures were used as

the experimental liquid. Kinematic viscosities of roughly 4, 37, and 280 cSt were made using

mixtures of 50%, 80%, and 95% glycerol-water respectively (54; 55). Based on these viscosities

and our other parameters we determine the Reynolds number to be in the range of 10−5 < Re∗ <

10−1. Surface tension for pure glycerol on acrylic is approximately 60 mN/m, yielding values

of γ/b ≈ 1.2 kPa for the smallest gap spacing. Therefore ∆P > γ/b for our range of pressures

although the ratio γ/(b∆P ) is approximately one-third for the smallest pressure of 3.5 kPa.

Bond numbers are in the range 0.01 < Bo∗ < 0.1, based on capillary lengths in the range of 1-2

mm where the value varies due to the density difference between the fluid mixtures. The range

of normalized correlation parameters are 1 < Nω
∆P
µL

< 500 and 0.1 < Nh̄µL∆P < 100 for ω and

h̄/b, respectively.

Drops with volumes of either 13, 30 or 50 µl were placed at the center of the Hele-Shaw cell

by using an Eppendorf syringe. The supply valve from the storage tank to the transducer was

opened prior to the signal generator supplying the transducer with a current. As the signal

generator began to supply the transducer with a current the transducer allowed the pressurized

air to enter the cell through the tapped hole. A CCD camera (PixeLINK) looking normal to

the cell from above was used to capture video of the experiment at a minimum of 30 fps at the

maximum resolution of 1280 × 1024 pixels and at a maximum of 100 fps at a reduced resolution

of 640 × 480. The video captured an experiment from just before the initial injection of the air

until a few seconds after the drop burst. Run times for the experiments ranged from less than

0.1 to over 102 s depending on viscosity, providing a minimum of approximately 10 experimental

images for analyzing each experiment. The combination of volumes, viscosities, pressures and

gap spacings yielded 51 experiments. Several experiments at small gap spacings, b < 75 µm,

with the lowest viscosity fluid of 4 cSt were difficult to perform as the drops were susceptible

to meandering or to an instability that occurs along the interface as they are squeezed between

the plates (56). After each experiment the Hele-Shaw cell was disassembled. Water with a

small amount of soap was applied to each side of both acrylic plates followed by a thorough

rinse with water. A soft towel was used to dry the plates to avoid scratching and the Hele-Shaw

cell was reassembled for a new experiment.
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A MATLAB program was used to precisely analyze the images. For each image frame the

gas area and the total area were measured by calculating and summing local pixel intensities,

Agasi = ∑
i
Agasi and Atoti = ∑

i
Atoti , respectively. There were some initial pixels that were always

present due to the pixel intensity of the gas phase inlet and therefore produced a non-zero initial

area for the gas phase. Only the frames from the initial injection of air until the first burst

were analyzed with the bursting time recorded as tend for these experiments. The area data

was used to produce an average film thickness estimate using Eq. (2.1). A steady state film

value for the average film thickness measurements is defined as the final two to three values for

the film thickness being within 10% of one another. No error bars are plotted in the following

graphs because none of the data is averaged.

2.5 Experiments: results and discussion

2.5.1 Qualitative results

Fig. 2.2 shows images of drops prior to bursting for a range of pressures and viscosities.

The set of top and bottom images represents results of experiments with two different initial

volumes of 13 and 50 µl, respectively, with the pressures listed in the left hand column. In

general the Saffman-Taylor instability is always present (13; 16). The amplitude of the fingers

appear less pronounced at the lower pressures, for a given volume and viscosity, and tend

to become more pronounced through branching and tip splitting events at higher pressures

according to the images. Also, the fingering pattern appear to be symmetric for most of the

experimental images shown.
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The first and second columns of the 13 µl volume experiments show fingering patterns that

are qualitatively similar at each pressure. The total cross sectional area at bursting though

does not appear similar, with a much larger area in the 4 cSt viscosity and 3.5 kPa experiment,

versus the 37 cSt and 3.5 kPa one. The remainder of the experiments in the first and second

column do appear to have similar total expanded volumes at bursting. A comparison of the

first and second column for the 50 µl experiments reveals similar patterns to those seen in the

13 µl experiments, i.e. similar fingering patterns at each pressure. Comparing experiments

with different volumes and for fixed viscosity, there is qualitatively similar fingering behavior

at equivalent pressure values. Comparing the two drop volumes for fixed pressure with varying

viscosity also shows similar trends of a decrease in the total and gas cross sectional areas at

the bursting event.

2.5.2 Quantitative results

Figs. 2.3(a)-2.3(b) shows semi-log plots of the measured gas, and the total cross sectional

areas made dimensionless using the constants Cgas and Ctot, respectively, as functions of elapsed

time. The values for the constants are generated from a fit to the equation Agas = Cgas(e
ωt−1)

and ∆Atot = Ctot(e
ωt − 1) using the experimental data. The dotted lines are the plots of the

function eωt for each of the corresponding experiments. The viscosity is 280 cSt in all of the

data shown in these two plots with the other operating parameters described in the legend. At

early elapsed times there are errors in the image analysis that are displayed by several values

of the dimensionless areas being less than unity for a few sets of experimental results shown

in Fig. 2.3(a). Comparing the two sets of data, Figs. 2.3(a) and 2.3(b), it appears that the

dimensionless gas area has a slightly larger range (1 ≤ Agas/Cgas + 1 ≤ 103) than the change in

the total area (1 ≤ ∆Atot/Ctot + 1 ≤ 20). The largest elapsed times occur for a combination of

larger fluid volumes, and small gap spacing.

Figure 2.3(c) shows the data for the normalized average-total film thickness h̄/b versus

elapsed time ∆t. The film thickness values, each denoted by a symbol described in the legend,

correspond to experiments shown in the previous graph where the viscosity is constant in each

at 280 cSt. Most of the data for the average film thicknesses reach a steady value prior to
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Figure 2.3 Semilog plot of a)
Agas
Cgas

+ 1 and b) ∆Atot
Ctot

+ 1 versus elapsed time for inlet pressures,

fluid volumes and gap spacings as listed in the legend. The viscosity is 280 cSt

in each experiment. Lines are drawn through the data representing the best fit

curves eωt. c) Plot of normalized total average film thickness h̄/b versus elapsed

time for inlet pressures, fluid volumes and gap spacings as listed in the legend.

The viscosity is 280 cSt in each experiment. Several experiment do not reach an

equilibrium while others display small amplitude oscillatory behavior.
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bursting. Some of the points exhibit oscillatory behavior partially due to viscous fingering.

But some experiments do appear to show liquid displacements where the ratio of the transient

area measurements are indeed oscillatory. All of the data points corresponding to experiments

with inlet pressures of 7.0 kPa reach an equilibrium in a much shorter time than the 3.5 kPa

inlet pressure experiments while the data points corresponding to the low pressure experiments

(3.5 kPa) all seem to reach an equilibrium value after approximately 1 second.

Figure 2.4 displays a summary of the total area and gas area measurements in the form

of two plots. Figs. 2.4(a)-2.4(b), are log-log plots of normalized ∆P /µL versus Re∗ = ωb2/νL

where the Reynolds numbers are determined by using ω derived from the gas and total area

data, respectively. Each data set consists of approximately three decades of data with a best

fit line also drawn. There is little scatter in the data with a monotonic trend for increasing

normalized ∆P /µL versus Re∗ = ωb2/µL.

Figure 2.5(a) shows a log-log plot of normalized ∆P /µL versus the bursting time, normalized

by a combination of the kinematic viscosity, gap spacing and liquid volume. The data range is

fairly robust with the bursting time plotted for over three decades of values. The general trend

is a monotonic decrease in the bursting time as either the pressure or gap spacing is increased

or by a decrease in the liquid viscosity. The best fit line appears to fit the general trend with

several data points from different experiments lying directly on the line.

Figure 2.5(b) shows the log-log plot of normalized µL∆P versus measured film height mea-

sured using Eq. (2.1), normalized by the plate separation distance. The range of normalized

µL∆P spans three decades but the average film thickness only spans one i.e. the minimum

average film thickness is approximately one-tenth of the gap spacing suggesting that the films

span the range of 5-95 µm. The dotted line is the best fit for all of the data with several data

points from different experiment lying on the line. The dispersion in the data is fairly uniform

at small and large values of the normalized µL∆P parameter with an equal number of points

above and below the best fit line.
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Figure 2.4 Log-log plots of Reynolds number Re∗ = ωb2/νL versus normalized ∆P /µL where

the characteristic rate ω is measured using either the transient a) gas or b) total

cross sectional area fit to the expression Ci(e
ωt − 1) where the i represents either

the gas gas or total tot area. A best fit line is drawn in each graph.
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Figure 2.5 a) Log-log plot of tendνLb/Vliq versus normalized ∆P /µL. b) Log-log plot of h̄/b

versus normalized µL∆P . A best fit line is drawn in each graph.
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2.5.3 Discussion

In Figs. 2.3(a)-2.3(b) the lines representing the best fits, eωt, appear to fit the data very well

for the elapsed time range shown. At early times there is clearly some deviation possibly due

to errors in the algorithm used to measure the areas but taken as a whole it appears that the

plots are linear suggesting that the radial expansion empirical correlations, Eqs. (2.2a-b) are

accurate for the range of parameters tested. The results seem to correspond to the pre-wet cell

experiments of Carrillo et al (9) since these clearly show exponential behavior. The discrepancy

between our results and there’s may be due to the fact that the authors plot their data versus

a non-dimensionalized function f(t), which is used to capture the transient behavior of the

rotating motor, instead of the actual elapsed time as we have done. Another possible reason

for the discrepancy is the notion that a pre-wet and dry cell possess different dynamics. Since

the less viscous phase fluid displaces the more viscous one then there is some dynamic wetting

of the dry-wet region where the liquid and the plates meet. This would suggest that surface

tension may in fact be relevant in the results presented here. But since the surface tension does

not vary much from one experiment to another then its precise relevance cannot be accurately

determined. But the reader should note that Carrillo et al. study a different problem, i.e. the

stable displacement of a liquid annulus, for which a nearly exact analytical formulation can be

drawn. The study presented here reduces to the Carrillo et al. result when the Saffman-Taylor

instability is ignored and average quantities are considered. Although the average fronts are

circular and hence the average fluid domain is indeed annular, it is not at all certain that the

dynamics of these average magnitudes in actual viscous fingering flows should coincide with

the dynamics of a liquid annulus studied in (9).

We continue the discussion with results related to the characteristic rate ω. The values for

the exponent m used in the expression for ω, Eq. (2.4), based on the gas and total area data

are 1.19 and 1.28 and for Cω are 1.7 × 10−5 and 3.1 × 10−5, respectively, for the data shown in

Figs. 2.4(a)-2.4(b). Therefore our assumption of constant and equivalent characteristic rate ω

for the measurements of Agas(t) and Atot(t) appears to be accurate. Also the values for each

ω appears to be within 20-30% of unity. The fact that the values are larger than unity suggest
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that an additional pressure may need to be included in future studies such as capillary pressure

γ/b. Also, a more detailed explanation of the behavior near the penetrating gas-displaced liquid

region that includes the curvature of the interface in the plane of the plates may provide more

accurate results (Ref. (51) provides a review of relevant studies). This would require more

detailed analysis of the fingering wavelength since the curvature is directly related to its value,

but this is outside the scope of the present study. The range for the constants, normalized by

the gap spacing, are 10,000 < Cgas/b
2 < 40,000 and 2000 < Ctot/b

2 < 10,000. The constants do

not change by one order of magnitude and therefore we believe it would be difficult to determine

an accurate correlation between them and the variables ∆P and µL.

The data for the burst time, shown in Fig. 2.5(a), follows the best fit line fairly well.

The bursting time tend is the only empirical expression that appears to involve fluid volume.

According to the best fit line, the bursting time, tend is proportional to (∆P
µL

)
−1.38

. The absolute

value of the exponent is similar to the one determined for the characteristic rate ω suggesting

that the product of ωtend is weakly dependent on ∆P /µL according to the experiments and

therefore mostly depend on the volume and b, i.e. ωtend ∼
Vliq
b3

. Given that ω ∝ ∆P
µL

then the

time to burst is approximately tend ∼ O(
µLVliq
b3∆P

) where we have assumed a power of unity for

the empirical relationship between ω and ∆P
µL

. This relationship though may fail to capture

precise bursting times because the velocity of the leading-penetrating interface may dominate,

particularly in the deeply non-linear regime of the Saffman-Taylor instability.

The final set of data to discuss are the average film thickness results. The main result is that

the film does appear to reach a steady state thickness for our range of parameters according

to the data presented in Fig. 2.3(c). In Fig. 2.5(b) the plots for the normalized average film

thickness follow the monotonic trend shown by the best fit curve. Given the slope and intercept,

the best fit curve yields the expression,

h̄

b
= 0.15

⎛

⎝

µL∆P

ρ
1/2
L γ3/2

b1/2
⎞

⎠

0.27

(2.5)

for the average film thickness as a function of µL∆P . Note that the gap spacing appears on

both sides of the equation for convenience. Twice the exponent, 2n = 0.54, is lower than what

has been predicted for and observed in other systems using similar measurement technique
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(9) but is relatively close in value to other general studies. The film measurement data, as a

whole, also does not show asymptotic behavior as the h̄/b reaches a maximum value of unity.

But individually the data does appear to show asymptotic behavior, in particular the 100 µm

gap spacing with 13 µl and 50 µl drop experiments. Overall, it requires about three orders of

magnitude change in the normalized µL∆P to yield one order of magnitude change in average

film thickness for 0.1 < Nh̄µL∆P < 100 according to Fig. 2.5(b). The measurement of thin

films of gas (thick liquid films) are a surprising result of the experiments. The results for

tend when combined with Eqs. (2.2a) and (2.5), are useful for determining the volume of gas,

Vgas = Agas(b − h̄), that penetrates the liquid droplet as it expands in a radial hele-Shaw cell

prior to bursting.

2.6 Conclusion

In this manuscript the displacement of a more viscous phase fluid by a less viscous phase

is studied in a radial Hele-Shaw geometry. The less viscous phase fluid is air and the more

viscous phase is a mixture of glycerol-water at various concentrations. The air is injected into

the liquid phase at constant pressure for three different volumes of liquid and the experiment

continues until the gas breaks through the interface. The average film thickness, gas phase and

total areas, and bursting time are measured by analyzing images of the experiments.

The experimental results suggest the gas phase and liquid phase areas expand exponentially

with respect to time, analogous to (9) for the problem of a fluid displaced in a rotating Hele-

Shaw cell. The measured film thicknesses span 5-95% of the the gap spacing over the range

of pressures and viscosities. The bursting times appear to follow a monotonic trend and scale

with the fluid volume.

In the future it will be beneficial to perform additional experiments varying the surface

tension either by using surfactants or other fluids. It also may be useful to perform experiments

under non-isothermal conditions to understand more details of the finger formation and fluid

displacement in non-ideal systems.
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CHAPTER 3. CO2 SEQUESTRATION IN A RADIAL HELE-SHAW

CELL VIA AN INTERFACIAL CHEMICAL REACTION

A paper published in Chaos1

Andrew. R. White2, Thomas Ward3’4

3.1 Abstract

In this manuscript experimental data for the displacement of a finite volume of aqueous

Ca(OH)2 using CO2 gas in a radial Hele-Shaw cell will be presented. This chemical reaction is

known to generate CaCO3 precipitate along the gas-liquid interface and we seek to understand

the influence of the reactive process on fluid displacement. The reactive experiment is compared

with the non-reactive case to determine if there is any measurable differences between the two in

the range of parameters: CO2 pressures (1-10% of an atmosphere measured in gage pressure),

liquid volumes (either 50 or 70 µl) and Ca(OH)2 concentrations (0, 10 or 20 mM) are studied.

Analysis is performed by measuring the displacing fluid area Agas and total fluid area Atot to

determine several quantities (gas expansion rate, quasi-equilibrium film rate and value, and

presence of fingering instability) used to distinguish the experiments. In general there appears

to be little affect of the chemical reaction on most of the measured quantities but certain trends

are noticeable in the film formation rate.

1A. R. White, T. Ward. CO2 sequestration in a radial Hele-Shaw cell via an interfacial chemical reaction.
Chaos 22, (2012)

2Graduate Student, Department of Mechanical and Aerospace Engineering, North Carolina State University
3Assistant professor, Department of Mechanical and Aerospace Engineering, North Carolina State University
4Author for correspondence: thomasw@iastate.edu
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3.2 Introduction

The displacement of a more viscous fluid by a less viscous fluid in a porous medium has

been studied for many years. For many industries, such as oil recovery, this problem is of great

interest since displacement of the oil phase by a less expensive, and less viscous fluid phase

provides a cost effective means for enhancing recovery. The typical model system consists of a

point source introducing the less viscous phase at a constant flow rate into a porous medium

containing the more viscous one. A convenient means to represent this system in a laboratory

setting is with a Hele-Shaw cell that consists of two parallel-circular plates with a gap spacing

much smaller than the radius. The advantage is that the flow occurs mainly in the radial

direction making experimental visualization and analysis less daunting.

The radial Hele-Shaw cell has allowed researchers to study the fundamental process of

fluid-fluid displacement and has elucidated some of its shortcomings. First, fingers of the

less viscous fluid form and penetrate the more viscous fluid rather than displace it evenly

(13; 15; 16; 18; 26; 31; 41; 42; 43; 44; 45; 51). This phenomenon, known as the Saffman-Taylor

instability (13), is a major problem for oil recovery and its severity varies based on system

parameters such as fluid properties, geometry and driving force. Second, there is also a liquid

film that is left on the porous media wall which further reduces recovery. Fluid displacement

becomes even more complex as a chemical reaction occurs at the interface of the two fluids.

In this manuscript we discuss the onset of fingering instability and film formation in a radial

Hele-Shaw cell in the presence of an environmentally relevant chemical reaction

Consider the cases of oil recovery where CO2 gas is sometimes used to displace viscous crude

oil (35). After being used for recovery it is desirable to sequester the CO2. One well known

method for carbon sequestration is to exploit the reaction of CO2 and Ca(OH)2 which, in the

presence of water, forms a CaCO3 precipitate (57; 58; 59). This scenario is of interest to fields

such as environmental sciences where the ability to efficiently capture and store CO2, perhaps

after being used for oil recovery, is desired. This reaction already occurs naturally, albeit slowly

(60). If slightly pressurized CO2 were injected into an aqueous solution of Ca(OH)2 in a porous

medium, such as a nearly depleted oil well, then the ensuing reaction could permanently store
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the carbon in solid CaCO3 deposits.

We study this system by presenting data for the expansion of pressurized CO2 gas into a

finite volume of aqueous Ca(OH)2 in a radial Hele-Shaw cell. We vary the inlet CO2 pressure

at low values (1-10% of an atmosphere measured in gage pressure) and also the Ca(OH)2

concentration (0, 10 or 20 mM) in a finite volume of water (either 50 or 70 µl). This chemical

reaction occurs along the gas/liquid interface producing the solid precipitate CaCO3. The

solubility of CaCO3 is heavily dependent upon the concentration of CO2 in the aqueous phase

i.e. the pressure (61).

The proposed Hele-Shaw system (constant pressure injection and finite liquid volume) rep-

resents a deviation from the traditional radial Hele-Shaw cell problem. Recently much work has

been done with studying the effect of chemical reactions on the Saffman-Taylor instability in

miscible and immiscible liquid-liquid systems with constant flow rate driven or reaction driven

displacement (27; 28; 29; 30; 62). The authors believe that the constant pressure injection may

represent a condition that is more easily recreated in the field particularly if the displacing fluid

is a gas.

As for the finite liquid volume it allows for several analytical tools. First, it allows for the

determination of the transient film thickness, h(t), by measuring the displacing and total fluid

areas, denoted Agas and Atot, respectively, where Atot is the cross-sectional area occupied by

both the gas phase and liquid phase. We also study the onset of fingering by visually comparing

the images as the parameters are varied from one experiment to the next. Second, we are able

to measure the quasi-equilibrium film value h∞ (the film thickness prior to bursting, see Fig.

3.1 for schematic) which is revealed as the last recorded value of h(t) measured where ḣ = 0

(overdot denotes a derivative with respect to time). Lastly, the rate of quasi-equilibrium film

formation ωfilm (also abbreviated as the film formation rate) is also compared between the

experiments. This value represents the negative time constant from a curve fit of the transient

film thickness data to an exponential function. After measuring these three values for each

experiment we further analyze the system by correlating the values to the system parameters

(CO2 pressure and Ca(CO)2 concentration). In general we suspect that the optimal system

for simultaneously displacing aqueous Ca(OH)2 and converting CO2 to CaCO3 would be the
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system which produces: 1) no fingering (stable displacement), 2) has a slow gas expansion rate

to provide ample time for the chemical reaction, 3) produces thin films so that the chemical

reaction occurs mostly along the gas-liquid interface and 4) reaches a quasi-equilibrium film

thickness in a relatively short amount of elapsed time.

The finite volume analysis that is key to understanding the experimental data was first

studied in 1999 by Carrillo et al (9). In their experiments the authors studied fluid displacement

driven by axial rotation in a radial Hele-Shaw geometry in the limit of low Reynolds and Rossby

numbers. A study combining experiments and analysis of a similar system and for a wide range

of rotation rates was performed in 2006 by Álvarez-Lacalle et al, (52). The finite liquid volume,

denoted Vliq, allowed tracking of the outer and inner annular liquid radii, then with knowledge

of the initial radius the authors determined a steady film thickness where they show that the

residual film was less than 10% of the gap spacing. Similar to the analysis of Carillo et al we have

also developed expressions for displacement rates and film thickness based on measurements of

the penetrating and displaced fluids’ cross sectional areas.

In the next section we present a detailed discussion of the chemical reaction of pressurized

CO2 and Ca(OH)2. We also discuss our method for measuring the drop expansion rate, film

formation rate and the film thickness. Variations in these results as a function of the input

parameters (inlet CO2 pressure and reactant concentrations) may lead to an understanding

of the optimal conditions for CO2 sequestration based on the outputs (presence of instability,

expansion rate, quasi-equilibrium film thickness and quasi-equilibrium film formation rate).

Following these discussions are the experimental materials followed by both a qualitative and

quantitative analysis of the data. Finally we will make conclusions and make recommendations

for future experiments based on the results.

3.3 Analysis

Consider an initially-nearly cylindrical Newtonian droplet containing aqueous Ca(OH)2,

of radius a2(t = 0) = constant, concentrically confined between two parallel circular plates

at a distance b apart where b ≪ `c (see Fig. 3.1 for illustration) or equivalently the Bond

number Bo∗ = (b/`c)
2 ≪ 1 where `c =

√
γ/∆ρg is the capillary length. ⋅∗ are used to denote
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dimensionless variables throughout this manuscript. Here γ denotes the surface tension, g the

gravitational acceleration constant and ∆ρ = ρl−ρg is the difference between the liquid and gas

density, respectively. In the limit Bo∗ = (b/`c)
2 ≪ 1 we can neglect gravitational effects and

assume that the film thicknesses are equal on the top and bottom plates. The other relevant

liquid properties are the absolute and kinematic viscosities µL and νL = µL/ρL, respectively.

Additional relevant dimensionless parameters are the Reynolds number Re∗ =
ωgasb2

νL
and the

capillary number Ca∗ =
UµL
γ where U is a measurement of the the displacement speed as

discussed previously (7). At time t > 0 CO2 gas is injected into the center of the parallel plates

at a constant pressure Pgas where the gage pressure is written as ∆P = Pgas − Patm with Patm

equal to atmospheric pressure. The injection pressure is low i.e. ∆P /Patm ≪ 1 so that the gas

density and temperature are both considered constant throughout the displacement process

(53). Surface tension, γ, may not be negligible under these conditions considering that the

pressure is low enough such that ∆P ∼ O(γ/b). As the pressure is increased the formation of

the typical Saffman-Taylor fingering instability becomes present at earlier elapsed times.

3.3.1 Interfacial chemical reaction

The chemical reaction to produce CaCO3 can be viewed in two steps. First, CO2 must

dissolve into the aqueous phase to form carbonic acid (60; 63),

H2O(`) +CO2(g) ⇆H2CO3(aq).

This reaction is slow, reversible, and limited greatly by the ability of CO2 to dissolve in

water as dictated by Henry’s Law (63). Higher pressures and temperatures create favorable

conditions for CO2 dissolution and the carbonic acid production. Second the Ca(OH)2 reacts

with the H2CO3 to form CaCO3 and two water molecules (60; 63),

Ca(OH)2(aq) +H2CO3(aq) → CaCO3(s) + 2H2O(`).

This step is limited first by H2CO3 production and then by Ca(OH)2 solubility, which

becomes more favorable at lower pressures and temperatures. A complete analysis of the second
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Figure 3.1 Top and side view of the problem schematic and experimental setup. The top view

shows the initial drop configuration at time t = 0 and the proposed configuration at

later times where a typical fingering instability develops in the azimuthal direction.

The side view shows the gas penetration at early and late times. In particular the

side view visualizes the analytical tools used in this manuscript: 1) gas expansion

rate in the radial direction ωgas, 2) transient film thickness h(t) as the gas displaces

the liquid and 3) the quasi-equilibrium film thickness h∞. Note the schematic is

not drawn to scale.
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step requires writing more chemical reaction equations that can involve reversible reactions (63)

but these are not relevant for our study.

3.3.2 Characteristic rate relationships and film thickness equation

As discussed in the introduction there are three analytical tools, presented below, that will

be used to characterize each individual experiment. Each one is based upon measurement of

experimental data. In particular we calculate the transient gas area, Agas, and total area, Atot,

as measured from above by analyzing sequential images of the expansion process.

3.3.2.1 Gas expansion rate, ωgas

The authors previously postulated empirical correlations for the expansion rates of the gas

and total areas of the forms (7)

Agas(t) = Cgas (e
ωgast − 1) , and (3.1a)

∆Atot(t) = Ctot (e
ωtott − 1) (3.1b)

respectively, where Ctot and Cgas are constants and ∆Atot(t) is the difference between the

total area at a specific time, Atot(t), and the initial area of the drop. For this study we

focus attention on the gas expansion rate. In the limit Re∗ ≪ 1 we previously used a general

correlation between ωgas and ∆P /µL for comparison with experiments and showed that it is

a power law relation (7). The viscosity is not varied in these experiments but we assume a

similar power law correlation with respect to the gas pressure,

ωgas = Cω∆Pm (3.2)

where m and Cω are to be determined by curve fits to experimental data. Values for the

exponent may be dependent upon the chemical reaction rate.
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3.3.2.2 Quasi-equilibrium film thickness, h∞

We define the quasi-equilibrium film thickness h∞/b as the film thickness where ḣ(t) = 0

prior to bursting. The quasi-equilibrium film is derived from the measurement of the transient

film which is made by using the expression,

h(t)

b
= 1 −

Atot − πa
2
2(0)

Agas
, (3.3)

where a2 is the initial radius of the drop as shown in Fig. 3.1. This transient value is the sum

of the film on the top and bottom plate. The quasi-equilibrium value, h∞/b, is measured by

approximating ḣ(t) ≈ ∆h/∆t = 0 which occurs prior to bursting. An average of the last few

transient h(t) values has provided a good approximation for h∞ in these studies.

As for a relationship between the gas pressure and the quasi-equilibrium film thickness an

empirical relationship for Ca∗ was derived by considering the first two non-zero terms in the

Taylor expansion of the average gas displacement (7). Since in this manuscript we only vary

the pressure we assume that our film thickness is directly proportional to the pressure to some

power ` or,

h∞
b

= C∞∆P ` (3.4)

where ` is to be determined by the curve fitting of experimental data. Previously we saw that

the power ` was approximately 0.25 (7). Since the viscosity is not varied in the experiments

then the actual range of data will be much smaller and may produce another power similar to

the different powers of Ca8 (i.e. h∞ ∝ Caq) that exist for different ranges of film thickness in

bubbles displacing liquid in tubes (64; 48; 46; 47).

3.3.2.3 Quasi-equilibrium film formation rate, ωfilm

The transient h(t) data provided later in this manuscript reveal that the evolution of the

film thickness, prior to bursting, is nearly exponential. This seems reasonable given that h(t)

is a function of the gas and total area which both evolve exponentially. But the gas and

total area expansion rates are based on correlations, since developing analytical theory for
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radial displacements that involve finger formation is non-trivial. Nonetheless, similar to the

gas and total areas, we’ve determined that the film evolves nearly exponentially according to

the expression,

h(t) − h∞
b − h∞

= e−ωfilmt. (3.5)

This information was not provided by the authors in previous studies. Similar to the other

analytical tools, and from the experiments (discussed later in the manuscript) the authors

assume that the rate of formation for the quasi-equilibrium film also has a power law relationship

with respect to the inlet pressure,

ωfilm = Cfilm∆Pn. (3.6)

The exponent n will also be determined experimentally.

3.4 Experiments: materials and procedure

A Hele-Shaw cell was created using two circular acrylic plates with a diameter of 10.2 cm

(4 in.) and a gap spacing of 100 µm using plastic shims (AccuTrex) as shown in Fig. 3.2. In

order to inject carbon dioxide into the cell a standard 8-32NC thread was tapped in the center

of one plate and a plastic pipe fitting (Cole Parmer) with an inner diameter of 2.4 mm (3/32

in.) was inserted. Carbon dioxide was stored in a 5.5 MPa tank and was connected to the

transducer with tubing that had an inner diameter of 6.35 mm. The inlet gas pressure was

controlled using a pressure transducer (Marsh Bellofram) and a function generator (Agilent)

to provide a precision step function. The supply valve on the gas tank was opened such that a

pressure of at least 140 kPa was created at the input of the transducer prior to any signal being

sent by the signal generator. Current from the function generator in the range of 4.6 < I < 5.3

mA was supplied to the transducer to yield pressure outputs in the range of 1.0 ≤ ∆P ≤ 3.10

kPa (0.15 ≤ ∆P ≤ 0.45 psig) in steps of 0.35 kPa (0.05 psig). This provides Re∗ = O(.01) and

Bo∗ = O(.001). For Bo∗ calculation an acrylic-water surface tension of γ = 35 mN/m was used
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Figure 3.2 Side view of the experimental setup of the Hele-Shaw cell.

(65). Calcium hydroxide (Fisher Scientific) concentrations of 0, 10 and 20 mM in water were

used as the experimental liquids.

A drop with a volume of 50 or 70 µL was placed at the center of the Hele-Shaw cell by using

an Eppendorf syringe. After the transducer received the signal at least three seconds elapsed

before any gas was allowed to flow upstream into the Hele-Shaw cell. This was accomplished

by placing a manually operated ball valve between the transducer and Hele-Shaw cell. A CCD

camera (PixeLINK) was used to capture video of the experiment at 100 or 200 fps looking 20

degrees from normal to the cell from above to reduce complications from glare on the Hele-

Shaw cell. The viewing angle distorted the video in one dimension and was compensated for by

multiplying that dimension by cos(20○) during analysis. To contrast the liquid drop from the

surrounding gas the drop was illuminated at an angle with a halogen lamp, taking advantage of

the differing indices of refraction of the liquid and gas. The video captured the experiment from

just before the initial injection of the carbon dioxide until either the drop burst or it expanded

outside of the viewing area. ”Burst” here does not imply a catastrophic event but rather the

first instance that the inner gas-liquid boundary becomes discontinuous. Run times for the

experiments range from less than 30 up to more than 1000 ms depending on gas pressure,

providing a minimum of approximately 10 experimental frames for 1.00 ≤ ∆P ≤ 2.75 kPa and
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a minimum of 5 experimental frames at 3.10 kPa. Due to the lack of experimental frames per

experiment for 3.10 kPa these experiments are not included in the quantitative analysis. In

total 96 experiments were performed with 32 experiments for each concentration of Ca(OH))2.

For each concentration 2 iterations were performed at 1.00 and 1.35 kPa, 4 were performed at

1.70 kPa, and 6 were performed for 2.05 ≤ ∆P ≤ 3.10 kPa. Fifteen experiments used 50 µL

drops while the rest used 70 µL, however the small difference in volume does not affect the

results significantly.

A MATLAB program was used to precisely analyze the frames of each video. For each frame

the annular area (area occupied by the liquid), the gas area (area occupied by the injected CO2)

and the total area were measured by counting pixels of different intensities. There were some

initial pixels that were always present due to the pixel intensity of the gas phase inlet and

therefore produced a non-zero initial area for the gas phase. Only the frames from the initial

injection of air until the first burst were analyzed, defined as the event in which the liquid-CO2

interface becomes discontinuous for the first time and CO2 is allowed to escape, tburst. The

area data was used to produce a transient average film thickness estimated using Eq. (3.3).

3.5 Experiments: results and discussion

3.5.1 Qualitative results

Figure 3.3 shows the drop expansion patterns representative of different concentrations of

Ca(OH)2 and different CO2 pressures. Each image in the figure depicts a 70 µL drop just

before it bursts. The Saffman-Taylor instability is less pronounced and even non-existent for

experiments performed at low pressures but clearly visible as the pressure increases. The first

identifiable fingers seem to form at 2.05 kPa and grow in numbers as pressure increases. By

2.75 and 3.10 kPa anywhere between 5 and 10 fingers are present. The fingering patterns

are similar for all concentrations for fixed pressure. It is important to note that, though Fig.

3.3 does provide a good representation of the fingering patterns observed, experiments under

the same pressure and concentration sometimes showed slightly dissimilar fingering patters i.e.

number of fingers, etc. would vary. This typically occurred at pressures of 2.05 kPa and abovel
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or those where fingering instabilities are present. As will be shown in the proceeding analysis,

considerably more error was found in the quantitative analysis for experiments at 2.05 kPa and

above. The authors suspect the presence of the Saffman-Taylor instability is a leading reason

for this error.

A noticeable difference in the some of the images in Fig. 3.3 is the appearance of a ring

of residue. This residue only appears in experiments with 10 or 20 mM concentrations and at

pressures at 2.05 kPa and above such as at 2.05 kPa and 10 mM Ca(OH)2. After experiments

exhibiting this residue the Hele-Shaw cell was disassembled and the presence of residue was

verified, however the composition of the residue was not investigated.

Even though the drop expansion sometimes includes fingering instabilities, particularly at

the higher pressures, the total drop area expands in a radial pattern; however in some cases the

expansion pattern was less radial such as at 1.70 kPa and 20 mM Ca(OH)2 and 2.40 kPa with

10 mM Ca(OH)2. This could be caused by surface roughness in the acrylic (our gap spacing is

100 µm where surface roughness may not be neligible) or in the initial shape of the liquid drop.

While an attempt was made to minimize this behavior throughout the course of the research

these issues may account for some of the error present in the proceeding quantitative analysis.
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3.5.2 Transient gas area and film thickness

Figures 3.4(a) and 3.4(b) show semilog plots of the measured gas area, nondimensionalized

by dividing by Cgas, versus elapsed time for 0 mM and 20 mM Ca(OH)2 drops, respectively.

The values for Cgas are determined by fitting the experimental data to Eq. 3.1a while simul-

taneously determining the gas expansion rate, ωgas. The solid lines plotted against the data

are plots of eωgast. All of the data fit the exponential model very well for the duration of the

experiment. For a few select plots in each figure an image of the drop expansion at the last

timestep is inserted. These images highlight the discovery that the exponential behavior of the

drop expansion is unaffected by the presence, or lack, of a fingering instability.

Figure 3.5 shows a semilog plot of the estimated film thickness, determined using Eq. 3.3,

versus elapsed time for the expansion of a 10 mM Ca(OH)2 from selected experiments. Here

the film thickness is normalized by using the quantity
h(t)−h∞
b−h∞

. Each set of data is fit with a line

that was determined by using Eq. 3.5. Similar to the transient gas area plots, the exponential

fit works well here.

3.5.3 Quasi-equilibrium film thickness

The normalized quasi-equilibrium film thickness versus pressure is shown in Fig. 3.6. Each

point plotted in the figure is the average of all data points at a given concentration and pressure.

Error bars are included representing one standard deviation above and below these average val-

ues. The normalized thickness range between 0.04 and 0.16, representing a total film thickness

between 4 and 16 µm within the 100 µm gap. As a whole the film thickness appears to increase

linearly with pressure. The large error bars make it impossible to discern a trend in the data

across different concentrations of Ca(OH)2. The gas sometimes forms fingers at early elapsed

times, causing the bursting event to happen at different times even at similar pressures and

concentrations.
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1.00 kPa 

1.35 kPa 

1.70 kPa 

2.05 kPa 

2.40 kPa 
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b) 

a) 
(without chemical reaction) 

(with chemical reaction) 

Figure 3.4 Semilog plots of
Agas
Cgas

+1 vs elapsed time for liquid drops with (a) no Ca(OH)2 and

(b) 20 mM Ca(OH)2 experiencing penetrating CO2 pressures indicated in the leg-

end. Plots for each pressure represent a single experiment with no averaging. Lines

are drawn through each data set representing the best fit curves of the form eωgast.

Images of the drop expansion just before the bursting event for select pressures are

included and correspond to the data set to which they indicate.
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Figure 3.5 Semilog plot of
h(t)−h∞

1−h∞
vs elapsed time for liquid drops with 10 mM Ca(OH)2

experiencing penetrating CO2 pressures as indicated in the legend. Plots for each

pressure represent a single experiment with no averaging. Lines are drawn through

each data set representing the best fit curves of the form e−ωgast.

3.5.4 Gas area expansion and film formation rates

Using Eq. 3.1(a) and 3.1(b) values for ωgas and ωfilm were found for each experiment and

plotted versus pressure in Fig. 3.7(a) and 3.7(b), respectively. The data points plotted in each

figure represent average values for each combination of pressure and Ca(OH)2 concentration.

Error bars are included in each figure which represent one standard deviation above and below

the mean. Comparing the two figures it appears the range of gas area expansion rates, roughly

1 ≤ ωgas ≤ 50, is less than the range of film formation rates, roughly 3 ≤ ωfilm ≤ 200, by a factor

of between 3 and 4. While there is this discrepancy in the magnitude of the rates the two

figures show similar exponential trends with the rates collapsing at P < 2.05 kPa.

While large error bars are shown in both figures at 2.05 kPa and above, this presents an

interesting result. Experiments at 1.70 kPa and below, which show little to no fingering as

depicted in Fig. 3.3, have considerably more consistent expansion rates and film formation

rates than experiments at higher pressures which do have pronounced fingering patterns. Two
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Figure 3.6 Plots of the average quasi-equilibrium film thickness for pressures 1.00 < ∆P <

2.75 kPa and concentrations as indicated in the legend. Error bars representing

one standard deviation above and below the mean are also plotted. An inset includes

the best fit to Eq. 3.6.

examples of typical fingering patterns are shown as insets in Fig. 3.7(a) to further highlight

this result.

Unfortunately the large error bars make it difficult to compare the expansion rates and

film formation rates at different concentrations of Ca(OH)2. At the three lowest pressures

differences in the average rates are very small with overlapping error bars. At higher pressures

in Fig. 3.7a differences in the average rates are more pronounced but inconsistent relative

to Ca(OH)2 concentration, making it difficult to remark on differences caused by Ca(OH)2.

However in Fig. 3.7(b) the average film formation rates for drops without Ca(OH)2 clearly

tend to be smaller than drops with 10 or 20 mM Ca(OH)2.

3.5.5 Discussion

The qualitative analysis of the data provides insight into optimal conditions for displacement

in the presence of a chemical reaction, as described earlier. First Fig. 3.4(a) and 3.4(b) show
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Figure 3.7 Plots of (a) average gas area expansion rates and (b) average film formation rates

for pressures 1.00 < ∆P < 2.75 kPa and concentrations as indicated in the legend.

Error bars representing one standard deviation above and below the mean are also

plotted. In (a) an inset includes the best fit to Eq. 3.2 and in (b) an inset includes

the best fit to Eq. 3.5.
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how the empirical model suggested in Eq. 3.1(a) is fit to the transient gas area data. In

fact the gas area as a function of time, Agas(t), is in very good agreement with the form

Agas(t) = eωgast − 1 even when no fingering instabilities are present. This suggests that the

Saffman-Taylor instability is not the root cause for the exponential nature of the pressure-

driven expansion of a liquid drop by a gas phase. Perhaps surprisingly, this fact is also true

whether or not any Ca(OH)2 or chemical reaction is present in the system. Fig. 3.5 also shows

that the transient film thickness, h(t), agrees well with the empirical model in Eq. 3.5 where

the film is hypothesized to form like
h(t)−h∞
b−h∞

= e−ωfilmt.

Figure 3.7 digs deeper into the analysis, revealing expansion rates for the area occupied by

CO2 and formation rates for the residual film. The rates in both sets of data collapse below

1.70 kPa and increase after. Applying the correlation for the gas expansion rate in Eq. 3.2 the

exponent m is 3.63, 3.78 and 3.58 with Cω = 770, 1100 and 820 Hz/psig−m for 0, 10 and 20

mM concentrations, respectively. Similarly the exponent n in Eq. 3.4 for the film formation

rate is 3.99, 4.57 and 4.37 with Cfilm = 3770, 12100 and 6980 Hz/psig−n for 0, 10 and 20 mM

concentrations. Comparing rates in Fig. 3.7(a) and 3.7(b) the film tends to form on a scale

three to four times shorter than the drop expands.

Over the range or pressures tested the drop expansion rates for 0, 10 and 20 mM Ca(OH)2

were similar. While at some pressures the 0 mM drops expanded slower, this was not a universal

result. Therefore there is no clear dependence of the chemical reaction on the expansion rate.

More experiments should be done with more concentrations of Ca(OH)2, higher pressures and

larger drop volumes before a definitive conclusion can be reached.

In contrast to Fig. 3.7a, Fig 3.7b does show some differences in regards to Ca(OH)2

concentration. While the film formation rates for all concentrations are roughly similar at

pressures below 1.70 kPa, the film formation rates are higher for drops with 10 or 20 mM

Ca(OH)2 than drops with no Ca(OH)2 at 2.05 kPa and above. This result could be explained

by a potential change to liquid properties as products from the chemical reaction are introduced

to the system along the gas-liquid interface.

Another interesting result that comes from Fig. 3.7 is the presence of large error bars at 2.05

kPa and above. The three lowest pressures have considerably smaller standard deviations for
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both film formation rates and drop expansion rates. Looking at Fig. 3.3 and the inset images

in Fig. 3.7(a) it is clear that these lowest pressures produced little to no fingering instability,

while the three highest pressures showed pronounced fingering. It is likely not a coincidence

that the onset of the Saffman-Taylor instability coincides with larger errors in the results.

The estimations for film thickness based on Eq. 3.3 are shown in Fig. 3.6 and highlight a

slight trend of increasing film thickness with increasing pressure where the exponent ` in Eq. 3.6

is 0.63, 1.03 and 0.92 with C∞ = 0.23, 0.38 and 0.30 psig−` for 0, 10 and 20 mM concentrations,

respectively. The film thickness varies between 4 and 18 µm in the 100 µm gap, similar to

the films of about 10% of the gap spacing observed by Carrillo et al (9). Unfortunately it is

impossible to pick out trends of film thickness versus concentration of Ca(OH)2.

Qualitatively the experiments exhibit similar patterns versus pressure for the three con-

centrations of Ca(OH)2 shown in Fig. 3.3. In general this is not surprising since the liquid

viscosity and density are not expected to change greatly between the concentrations. The au-

thors have shown previously that increases in the penetration rate leads to a more pronounced

fingering instability, and these new results agree (7).

In summary there does not appear to be any noticeable different in the onset of fingering

when the chemical reaction is present. This is a welcome result since stable patterns tend

not to burst as quickly as a system with many fingers (7). As for the measurable quantities

there are slight deviation in the gas expansion rate and film thickness but, again, there is no

clearly discernable difference over the range of pressures and concentrations studied. The one

measurable quantity that does appear to show differences is in the film formation rate. Clearly

the presence of the chemical reaction produces faster forming films (faster quasi-equilibrium film

formation) as the CO2 pressure increases. But the separation from the experiments without

chemical reaction occur at higher pressure so they do not overlap with stable displacements

(no observed fingering).

3.6 Conclusion

Radial displacement of a viscous liquid by a less viscous fluid in a Hele-Shaw cell is a

technically challenging problem. Most previous studies focused on constant injection of the



www.manaraa.com

47

less viscous fluid phase into a completely filled Hele-Shaw cell. In this manuscript we presented

results for the constant pressure injection of carbon dioxide into a finite volume of water that

contains calcium hydroxide. The carbon dioxide and aqueous calcium hydroxide can form the

precipitate calcium carbonate with the proper operating conditions.

Ideally the chemical reaction would happen such that all of the aqueous calcium hydroxide

is converted into calcium carbonate precipitate making this process ideal for sequestration.

But there are several barriers to efficient conversion and these are split between the chemical

reaction dynamics and the physics of the fluid displacement. Since the CO2 is a gas it must

first dissolve into the water and form carbonic acid before the reaction can proceed. This is

more efficient at higher pressure, but using high pressure will reduce the contact time of the

two phases since the finite liquid volume will ultimately burst at a shorter elapsed time. High

pressures also produce thicker films on the walls of the Hele-Shaw cell which are also barriers

to transport as the gas must dissolve into the liquid. Furthermore, the speed at which the film

forms and reaches a quasi-equilibrium may be effected by the reactants and products.

The experiments that were performed consisted of two acrylic disks approximately 10 cm in

diameter. The CO2 gas is injected at pressures of approximately 1.0 to 3.1 kPa, with calcium

hydroxide concentration of 0, 10 or 20 mM. With our finite liquid volume we were able to

analyze film thickness and rate constants for both the gas expansion and film formation. Both

clearly show some dependence upon the chemical reaction with more salient effects on the film

formation rate.

In the future it will be useful to perform additional experiments at higher pressures to

confirm that the film thickness indeed has some bearing on reaction dynamics. There are also

other reactants that may allow for more rapid conversion of the CO2 and it will be beneficial

to investigate their applicability. Some involve using buffer solutions to increase the pH which

increases the solubility of the calcium hydroxide. Lastly, there are robust and well-established

techniques for measuring film thickness that should be used to confirm the measurements

reported here and elsewhere.
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CHAPTER 4. THE CONSTANT-PRESSURE GAS-DRIVEN RADIAL

DISPLACEMENT OF A FINITE NON-NEWTONIAN LIQUID DROP

4.1 Introduction

The displacement of non-Newtonian shear-thinning liquids by less viscous fluids is relevant

to a number of industries including fluid-assisted injection molding (3; 4), soft lithography (5)

and patterning thin polymer films (6). The displacement process can often result in viscous fin-

gering instabilities similar to many Newtonian displacement processes which have been studied

for many years (10; 13; 14; 15; 16; 18; 26). This viscous fingering instability often negatively

impacts the industrial process, but in some cases such as patterning the instability can be a

desired effect (6). Therefore the study of viscous fingering in shear-thinning liquids has been

a popular topic dating back to work by Nittmann and Daccord in Nature in 1985 (19). Since

then many studies on the non-Newtonian problem have been performed.

The first stability analysis of non-Newtonian displacement in a radial Hele-Shaw cell was

done by Buka, Palffy-Muhoray and Racz in 1987 (21; 22). They studied a liquid crystal being

displaced by gas at a constant pressure and used Darcy’s Law to formulate a linear stability

analysis. While their data seem to fit well with their analysis the use of Darcy’s Law may be

inappropriate because, as has been shown in chapter 2 and 3, the constant pressure problem

results in an interface velocity which is not constant so the flow profile cannot be assumed

developed. Nonetheless their experiments exhibit the tell-tale fractal or dendritic fingering

patterns that are characteristic of the shear-thinning viscous fingering problem.

A number of other papers have been published on shear-thinning viscous fingering where

the less viscous phase is injected at a constant flow rate (20; 66; 67; 68; 69). This means the

mean interface velocity is known and a linear stability analysis can be performed. Often in
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these studies the instability is characterized by the finger widths, fingering density, perturbation

growth rate or the corresponding wavenumber of the fastest growth rate. For example in work

by Daccord and Nittmann fingering densities and the fractal dimension are used to quantify

the instability for the whole displacement region (20). Instability growth rates have also been

used such as in work by Park and Homsy and also by Wilson where the instability amplitude

grows in the flow direction exponentially with time (18; 68). There have been fewer studies

using a constant pressure displacement. In a paper by Yamamoto et al (23) a constant pressure

displacement in a linear Hele-Shaw cell was used where they characterized the instability by

measuring the density of fingering and also the number of side-branches observed. While

these methods for quantifying the instability work well for single fingers or generalizations of a

particular fingering regime some information can be lost. In the case of comparing Newtonian

viscous fingering, which exhibits smooth pedal-like fingers, to shear-thinning viscous fingering,

which can exhibit more complex fractal patterns (19; 20; 21; 66), using finger widths or fingering

densities may not satisfactorily compare the two regimes. Also due to the highly non-linear

side-branching phenomena in shear-thinning viscous fingering, defining a growth rate in the

flow direction becomes difficult.

In this chapter a new method for quantifying the viscous fingering instability that applies to

both Newtonian and non-Newtonian fingering regimes will be presented based on comparing the

length of the unstable interface to the circumference of the corresponding stable interface. This

is analogous to the technique used by Zhao and Maher in their 1990 paper where the length

of the interface in a linear Hele-Shaw cell was compared to the initial length of the stable

interface (70). This new method measures a physical property that is universal to all viscous

fingering problems making it applicable to any viscous fingering regime. This quantity can

also be tracked with time and a rate of growth can be found even in highly non-linear regimes.

Experiments will be performed using air at constant pressure to displace a finite liquid drop

of light mineral oil (Newtonian) and mineral oil with either 250 or 500 ppm polyisobutylene

(shear-thinning) in a radial Hele-Shaw cell. In addition to introducing the new instability

quantification technique a number of other analytical tools will be used to characterize the

displacement process. Similar to chapter 2 and 3 the area of the gas phase will be tracked with
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time to determine a rate of expansion of the gas. The same conservation of volume technique

will be used to estimate the residual film thickness, and the time it takes for the gas phase to

burst through the liquid drop will also be measured.

In the following sections a description of the techniques used to measure the displaced area

and the interface length will be presented and the new instability quantification method will be

described. Also empirical relationships that describe the gas expansion and film formation over

time will be presented. Later a detailed description of the experimental setup and procedure

will be presented as well as the improved image analysis technique. The results and discussion

will follow and conclusions based on the results will be made.

4.2 Analysis

The problem begins with a finite drop of light mineral oil or light mineral oil containing

a certain concentration of polyisobutylene (PIB) squeezed between two horizontal plates. The

drop is considered to be a cylinder with initial cross sectional area Ai and height equal to the gap

b between the plates. The gap b is small such that, with the liquid density ρ = 820 kg
m3 and surface

tension γ = 0.03mNm , the Bond numbers (Bo∗ = ρgb2

γ ) range between 7×10−4 ≤ Bo∗ ≤ 1.68×10−2.

The superscript ’∗’ denotes dimensionless variables. The small Bo∗ allows for gravitational

effects to be neglected and for the assumption that the residual film thicknesses are equal on

the top and bottom plates (refer to Fig. 4.1b and 4.1c). The Reynolds numbers Re∗ range

between 10−6 < Re∗ < 10−1 so inertial effects will not be greatly important. The definition of

the Re∗ used in the proceeding analysis will be defined in section 4.2.3.

At ∆t = 0 air is injected into the center of the liquid drop through the bottom plate with

a constant pressure Pg. The gauge pressure of the injected air is then ∆P = Pg − Patm and

∆P /Patm ≪ 1 so that the gas density and temperature can be assumed constant. For elapsed

times ∆t > 0 the gas displaces the liquid phase radially and, after some elapsed time, the

interface that forms between the injected gas and the liquid becomes unstable in the form of

viscous fingering. Eventually the injected gas escapes through the liquid phase, the interface

becomes discontinuous, and the experiment ends. This elapsed time is called tburst. In chapter

2 a power law relationship between tburst and the gas pressure was found according to:
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Figure 4.1 An arbitrary sector of the gas-driven displacement in the horizontal plane is shown

in (a) with the inner liquid-gas interface, Γin(∆t), whose length is L(∆t), and the

outer interface, Γout(∆t), at elapsed time 0 ≤ ∆t ≤ tburst. Also pictured is the fitted

radius Rfit(∆t) of the corresponding stable case. The displacement in the vertical

plane is shown in (b) and (c) where the gap between the plates is b. The residual

film h(∆t) is assumed equal on top and bottom so that either side is h(∆t)/2 as

shown in (b). In (c) the elapsed time approaches tburst and the film approaches a

quasi-equilibrium value, h∞.
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(4.1)

where νo and µo are the kinematic and dynamic viscosities measured at the 1 Hz shear rate

(see Fig. 4.2) and VL is the liquid volume. The constant Ct and the exponent p are to be

determined experimentally. For all analyses in this chapter viscosities for the Newtonian and

non-Newtonian liquids shown in Fig. 4.2 will be taken at the 1 Hz shear rate. Experimental

data in this chapter will be fit to eq. 4.1 and compared to the result from chapter 2.

4.2.1 Area measurement using an integral method

Consider the liquid-gas interfaces Γin(∆t) and Γout(∆t) that are present as the gas phase

displaces the finite liquid phase as shown schematically in Fig. 4.1a. The cross-sectional area

contained by Γin , Agas, as well as the area contained by Γout, Atot, at any elapsed time

∆t is desired. Previously to calculate Agas and Atot the pixels occupied by either area were

counted. A more convenient method for determining the areas uses the Kelvin-Stokes theorem:
s
A(∇ ×F) ⋅ ndA = ∮C F ⋅ ds. Here F is a vector field defined on the region A enclosed by the

simple closed curve C and n is the normal vector to the region A. In the case of region A being

planar and by choosing (∇×F) ⋅n =
∂Fy
∂x − ∂Fx

∂y = 1 the double integral becomes exactly the area

of the region A enclosed by C. One solution for F is Fx = −
1
2y and Fy =

1
2x, and it follows that

the area enclosed by a simple closed curve C is A = 1
2 ∮C(xdy − ydx). This equation can be

used to find the area Agas enclosed by Γin which is a simple closed curve. With the discretized

inner interface Γin(n) composed of N points where Γin(1) = Γin(N), we can chose x(n) = Γnin,x,

y(n) = Γnin,y, dx(n) = Γn+1
in,x − Γnin,x and dy(n) = Γn+1

in,y − Γnin,y, resulting in:

Agas(∆t) =
1

2

N−1

∑
n=1

(Γnin,xΓn+1
in,y − Γnin,yΓ

n+1
in,x) (4.2)

which returns a positive result when traveling counterclockwise about the interface. In an

identical way the area enclosed by Γout is found using

Atot(∆t) =
1

2

N−1

∑
n=1

(Γnout,xΓn+1
out,y − Γnout,yΓ

n+1
out,x). (4.3)
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With the exception of very early elapsed times, Γin and Γout typically contain O(102) to O(103)

points.

4.2.2 Viscous fingering quantification

Consider again the interface Γin(∆t) and now the area occupied by the gas phase Agas(∆t).

Stable radial displacement of the liquid by the gas is defined as displacement with no fingering

i.e. Γin(∆t) is a circle . Therefore at a given elapsed time with displaced area Agas the

corresponding stable case would be a circle with radius Rfit(∆t) =

√
Agas(∆t)

π . The length

of the observed discretized inner interface with N points at a particular elapsed time can be

approximated by summing the distances between each of the points, or

L =
N−1

∑
n=1

[(Γn+1
in,x − Γnin,x)

2
+ (Γn+1

in,y − Γnin,y)
2
]

1
2 . (4.4)

Then a direct comparison can be made between the length of the inner interface L and the

circumference of the corresponding stable case:

ξ(∆t) = 1 −
L(∆t)

2πRfit(∆t)
(4.5)

where ξ will be called the fingering magnitude. This new quantity provides a robust measure-

ment of the degree to which viscous fingering is occurring and provides a picture of how the

instability grows with time in radial geometry. While it does not imply anything about the

instability’s geometry, it allows for a direct comparison between very different fingering regimes

such as smooth Newtonian pedal fingers to complex non-Newtonian dendritic instabilities (see

Fig. 4.7).

For early elapsed times Γin is roughly circular and thus ξ ≃ 0 up to the time when the

instability first develops, ts. The threshold for when the displacement is in the viscous fin-

gering regime is chosen as ξ ≈ 0.09 which was determined by examining experimental images

qualitatively, and from ts ≤ ∆t ≤ tburst ξ increases roughly linearly on this domain. Therefore

the fingering magnitude can described by:

ξ(∆t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 ∶ 0 ≤ ∆t < ts

ωξ (ts −∆t) ∶ ts ≤ ∆t ≤ tburst

(4.6)
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where the slope ωξ is the instability growth rate. The experimental data will be fit to eq. 4.6

and the instability growth rates of both Newtonian and shear-thinning displacements will be

compared.

4.2.3 Gas expansion rate and dimensionless numbers

An empirical correlation for the expansion rates of the gas area was previously postulated

in chapter 2 and again in chapter 3

Agas(∆t) = Cgas(e
ωgas∆t − 1) (4.7)

where Cgas is a constant and ωgas is the gas area expansion rate. This exponential model

has been used successfully and we will continue to use it in this chapter. Two important

dimensionless parameters for characterizing the system are the Reynolds number, Re∗, and the

capillary number, Ca∗. Both of these numbers traditionally include a characteristic velocity.

Whereas a constant flow rate system can use that flow rate to determine a characteristic velocity,

determining a characteristic velocity in the constant pressure system is not as straight forward.

Furthermore with the introduction of the viscous fingering instability the velocity becomes not

only a function of time but also r and θ. Therefore a different approach to determining a

characteristic velocity and thus a Re∗ and Ca∗ that justly characterizes the system on the

whole will be used.

Using eq. 4.7 implies that the average gas radius as a function of time is of the form

r̄ ∝
√
eωgas∆t − 1. Using the first two terms of the Taylor series expansion of eωgas∆t gives r̄ ∝

√
ωgas∆t +O(ωgas∆t)2. By ignoring the higher-order terms the average velocity is proportional

to the square root of the expansion rate or v̄ ∝
√
ωgas. Let us replace the characteristic velocity

in Re∗ and Ca∗ then with
√
ωgas:

Re∗ =
ρ
√
ωgasb

µo
⋅NRe (4.8)

Ca∗ =
µo

√
ωgas

γ
⋅NCa. (4.9)
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The undefined terms NRe and NCa are necessary to make the groups dimensionless. In an

attempt to determine the simplest forms for NRe and NCa we will choose NRe = NCa =
√
νo.

This results in

Re∗ = b

√
ρωgas

µo
(4.10)

Ca∗ =
1

γ

¿
Á
ÁÀµ3

oωgas

ρ
(4.11)

where the characteristic velocity is now essentially vchar =
√
νoωgas. Previous work shown in

chapter 2 and 3 has also suggested a power law relationship between ωgas and ∆p
µo

. Under the

assumption that ωgas ∼
∆p
µo

a second set of Re∗ and Ca∗ will be defined by replacing
√
ωgas

with
√

∆p
µo

:

Re∗p =
b

µo

√
ρ∆p (4.12)

Ca∗p =
µo
γ

√
∆p

ρ
. (4.13)

To test the relationship between ωgas and ∆p
µo

the two Reynolds numbers, Re∗ and Re∗p , will be

plotted against each other:

ρωgasb
2

µo
= Cω [Bo∗ ⋅

ρb2

µo
(

∆P

µo
)]

m

(4.14)

where an exponent of m ≈ 1 would indicate that ωgas ∼
∆p
µo

.

4.2.4 Residual film estimation

The transient residual film h(∆t) is determined using a global mass conservation approach

identical to that used in chapters 2 and 3, leading to the expression

h(∆t)

b
= 1 −

Atot(∆t) −Ai
Agas(∆t)

, (4.15)

where Ai is the initial area of the drop. This transient value is the sum of the film on the

top and bottom plate. The quasi-equilibrium value, h∞/b, is defined as the film thickness at
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∆t = tburst.

The above equation neglects the curvature at the inner interface. One can show that the

effect of disregarding the curvature of the interface in film estimation is negligible. Referring

to Fig. 4.1b, the region neglected in the above equation is the shaded area around the inner

liquid-gas interface. The cross sectional area in this region is Aneglect = (b − h)2 (1
2 −

π
8
) and

integrating about the interface gives Vneglect = ∫Γin Aneglectd` or

Vneglect = (b − h)2
(

1

2
−
π

8
)
N−1

∑
i=1

[(Γi+1
in,x − Γiin,x)

2
+ (Γi+1

in,y − Γiin,y)
2
] (4.16)

It will be shown later in this chapter that values for h typically range between 0.1 ≤ h
b ≤ 0.5.

Then the leading terms in eq. 4.16 before the summation notation will be O(10−3) to O(10−5)

mm2. The longest interface occurs in the 500 ppm PIB experiment at 6.9 kPa in a 50 µm gap

where the interface is nearly 90 cm long. In this maximum case the value of Vneglect would be

about O(0.1) µL which is much less than the 50 µL volume.

Previously an exponential rate of decay was suggested for the formation of thin films on

the top and bottom walls of the Hele-Shaw cell. This provided some further insight into

the relationship between the film formation rate and the injection pressure. Further analysis,

partially based on improved algorithms for measuring the expansion area described in section

4.2.1, have led to attempts of additional curve fits. Here a power law relationship is proposed

for the film formation of the form h(t) = Cfilm (∆t)nfilm where nfilm is the formation power law

exponent and Cfilm is the power law coefficient. Best fits of the data using this relation results

in a nearly constant nfilm over the range of experiments with a value of approximately −1
2 .

This suggests a diffusion like process that leads to film formation. The constant Cfilm however

does vary with pressure and polymer concentration. Our proposed model for the transient film

thickness is then:

h(∆t) = Cfilm (∆t)−
1
2 (4.17)

where Cfilm is to be determined experimentally. As for a relationship between the gas pressure
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  𝜇  
𝑃𝑎 ∙ 𝑠  

𝛾 𝑠−1  

Figure 4.2 Viscosity versus strain rate data for 0, 200 and 500 ppm polyisobutylene (M.W.

4,700,000) in light mineral oil is shown. The rheology data was measured using a

parallel plate-plate rheometer.

and the quasi-equilibrium film thickness the value Ca∗p from eq. 4.11 will be used.

4.3 Materials and procedure

4.3.1 Setup and experimental procedure

Two square acrylic plates with a thickness of 11 mm and width of 15 cm were used to

create the Hele-Shaw cell. Plastic shims (AccuTrex) with thicknesses of 50, 100 and 250 µm

were placed between the two plates to achieve the desired gap spacing. In one plate a 10-32NC

thread was tapped into the center in order to insert a plastic barbed fitting (Cole Parmer) with

an inner diameter of 2.4 mm. Through this inlet air was injected into the cell at a constant

pressure 1.4 ≤ ∆P ≤ 6.9 kPa which was controlled by a pressure regulator (Marsh Bellofram).

Up stream from the regulator was a solenoid valve (Marsh Bellofram) controlled by a function

generator (Agilent) that initiated the flow when desired. Air was stored upstream from the

valve at a pressure much greater than the operating pressures.

A liquid drop with a volume of 100, 200 or 500 µL for the 50, 100 or 250 µm gap spacings,

respectively, was used to keep the initial drop area roughly constant. With the cell disassembled
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the drop was pipetted (Biohit) onto the plate without the inlet. The plate with the inlet was

then carefully placed on top with the drop centered about the inlet. Large binder clips held the

cell together. A CCD camera (PixeLINK) was used to capture video with a resolution of 640

x 480 pixels and frame rates up to 100 fps. The camera viewed the experiments at an angle of

20○ from normal to the cell and a 300 W lamp was used to illuminate the drop. Though the

drop and surrounding air are clear the refraction indices are different and the combination of

lighting and viewing angle produced a high contrast between the liquid and gas (see Fig. 4.3a).

The slight distortion in the y-direction of each experimental frame caused by the camera angle

was easily corrected during image analysis by scaling the y-axis by (cos20○)−1. Experimental

videos were captured from the initial injection of the gas up to the bursting time tburst.

The experimental liquids used were light mineral oil (Fisher Scientific) with 0, 250 and

500 ppm polyisobutylene (Acros) with an approximate M.W. of 4,700,000. The oil-polymer

solutions were mixed at 80○C using a magnetic stirring hot plate. All experimental fluids

were at room temperature during experiments. Rheology data showing the viscosity versus

strain rate are shown in Fig. 4.2. The rheology data was acquired using a parallel plate-plate

rheometer. Experiments in a 250 µm gap at 6.9 kPa reached tburst too quickly for an adequate

number of experimental frames at 100 fps, so at 250 µm only pressures up to 5.5 kPa were

used. In total 42 experiments were performed.

4.3.2 Image analysis

The experimental videos captured with the CCD camera were analyzed in MATLAB frame

by frame. Each frame is a bitmap image with pixel values ranging from 0 to 255 where 0 corre-

sponds to black and 255 corresponds to white. The combination of camera angle and lighting

allowed the area occupied by the drop to appear significantly darker than the surrounding gas-

filled areas. A threshold could then be chosen where pixels below it had their values floored to

0 to represent pixels occupied by liquid. Pixels above the threshold were given a value of 255

to represent pixels occupied by air. A simple 2-D median filter was used to smooth the data in

some cases (MATLAB function: ”medfilt2”). An example of a raw video frame and the frame

after the application of a threshold is shown in Fig. 4.3a and Fig. 4.3b, respectively.
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liquid 

gas 

raw frame from video threshold and filtering 

traced interfaces 

1 cm 

tracing scheme 

a) b) 

c) d) 

Figure 4.3 A pixel threshold and filtering process is applied to a raw frame from an experimen-

tal video in (a) resulting in the black and white image in (b). A schematic of the

interface tracing scheme is shown in (c) which then results in traces of the inner

and outer interfaces in (d). The inner interface in (d) in this example consists of

2364 points and the outer interface consists of 844 points.
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Next it was necessary to trace the inner and outer liquid-gas interfaces. In Fig. 4.3c a

zoomed-in view of an arbitrary location on the interface is shown where each square is a pixel.

The white squares represent the gas area, the light gray squares represent the liquid area, and

the dark gray squares represent the interface and are the pixels we wish to trace. Beginning

with a known pixel on the interface the eight adjacent pixels are investigated one at a time in

a counterclockwise manner until a pixel with value 0 is found. For example in FIG. 4.3c the

initial known pixel is marked with a ’1’. Then the pixel to its right is called. Because that

pixel is white (has a value of 255) it continues counterclockwise as indicated by the arrows.

Finally a pixel with a value = 0, marked by a ’2’ in Fig. 4.3c, is reached. Then the process

continues by searching the pixels adjacent to pixel ’2’. It is crucial that the first pixel called in

the sequence is to the side from which the current pixel was reached. As shown in Fig. 4.3c,

when discovering pixel ’2’ the movement was from right to left. Therefore the first step in

discovering the next pixel is to move from left to right starting from pixel ’2’. This algorithm

is used to trace both the inner interface, Γin, and outer interface, Γout, as shown in Fig. 4.3d.

With the inner and outer interfaces traced the areas occupied within each interface as well as

the length of the interface can be calculated and then used in the analytical tools described

earlier in this chapter.

4.4 Results

Figures 4.4, 4.5 and 4.6 show the traces of actual liquid-gas interfaces for select experiments

in a 50, 100 and 250 µm gap, respectively. Each experiment shown is at ∆t = tburst. A dotted

circle is plotted on top of each inner interface where the circle shares its center with the inner

interface’s centroid and the circle’s area is equal to Agas(tburst). This fitted circle represents

the corresponding stable case described in section 4.2.2. In each plot the pressure is listed

on the left which increases from top to bottom and the PIB concentration is listed across the

top which increases from left to right. The inner interface Γin and outer interface Γout are

labeled in each figure in the top right. A scale bar is shown at the bottom in cm. In Fig. 4.4,

particularly at the lowest pressure, there exists a small portion of liquid that remains attached

to the gas inlet. With the gap being so small in these experiments the liquid phase likely has
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1.4 kPa 

4.1 kPa 

6.9 kPa 

0 ppm PIB 250 ppm PIB 500 ppm PIB 

cm 

Γ𝑖𝑛 

Γ𝑜𝑢𝑡 

circular fit 

Figure 4.4 The inner interface, Γin, and the outer interface, Γout, of experiments in a 50 µm

gap are traced in black at elapsed time tburst. Pressure increases from top to bottom

and PIB concentration increases from left to right. The gas inlet is marked with

a ”+” and the inner interface of the corresponding stable case with radius Rfit is

represented by the circular dotted line.

difficulty de-wetting the sharp edge of the gas inlet. While this certainly has an impact on the

qualitative view of the displacement, the quantitative measures of these experiments still fit

well with the rest of the data as will be shown in the proceeding results.

In Fig. 4.7 the inner interfaces for mineral oil (Fig. 4.7a) and mineral oil with 500 ppm

PIB (Fig. 4.7b) in a 100 µm gap at 4.1 kPa are traced at time steps of 100 ms, providing a

clear look at the evolution of Newtonian and shear-thinning viscous fingering. The concepts

of tip-splitting, primarily a Newtonian feature, and side-branching, primarily a shear-thinning

feature, are clearly defined in this figure.



www.manaraa.com

63

cm 

1.4 kPa 

4.1 kPa 

6.9 kPa 

0 ppm PIB 250 ppm PIB 500 ppm PIB 

Γ𝑖𝑛 

Γ𝑜𝑢𝑡 

circular fit 

Figure 4.5 The inner interface, Γin, and the outer interface, Γout, of experiments in a 100

µm gap are traced in black at elapsed time tburst. Pressure increases from top to

bottom and PIB concentration increases from left to right. The gas inlet is marked

with a ”+” and the inner interface of the corresponding stable case with radius

Rfit is represented by the circular dotted line.
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1.4 kPa 

4.1 kPa 

5.5 kPa 

0 ppm PIB 250 ppm PIB 500 ppm PIB 

cm 

Γ𝑖𝑛 

Γ𝑜𝑢𝑡 

circular fit 

Figure 4.6 The inner interface, Γin, and the outer interface, Γout, of experiments in a 250

µm gap are traced in black at elapsed time tburst. Pressure increases from top to

bottom and PIB concentration increases from left to right. The gas inlet is marked

with a ”+” and the inner interface of the corresponding stable case with radius

Rfit is represented by the circular dotted line.
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a) b) 

tip-splitting 

side-branching 

Figure 4.7 The inner interfaces of a) mineral oil and b) mineral oil with 500 ppm PIB being

displaced in a 100 µm gap at 4.1 kPa are shown at timesteps of 100 ms up until

∆t = tburst to portray the concepts of tip-splitting and side-branching.

The time it takes for the inner gas phase to burst through the liquid drop is plotted in

log-log form in Fig. 4.8. The burst time is normalized using a combination of the viscous

time scale and liquid volume, νob
VL

. This value is then plotted against ∆p
µo

√
b3ρ
γ similar to the

result in chapter 2. The data span almost three decades in the y-direction and about two in

the x-direction, and collapse onto roughly one curve whose slope is -1.21 or about −5
4 . In this

plot the experiments with no PIB are black, experiments with 250 ppm PIB are dark gray,

and experiments with 500 ppm PIB are light gray. In the plot the circles (#,  ,  ), squares

(◻, ∎, ∎) and diamonds (◊, ⧫, ⧫) correspond to experiments with Bo∗ = 7 × 10−4, 2.7 × 10−3

and 1.68 × 10−2, respectively. The black markers ( , ∎, ⧫), gray markers ( , ∎, ⧫) and open

markers (#, ◻, ◊) correspond to PIB concentrations of 0, 250 and 500 ppm, respectively. The

data labeling convention used in Fig. 4.8 will be consistent throughout this chapter save for

Fig. 4.9, 4.11 and 4.13.

The liquid displacement is further characterized by thr semi-log plot of the area occupied

by the gas phase versus elapsed time in Fig. 4.9a-4.9c. The liquid drops have 0 ppm, 250 ppm

and 500 ppm PIB in Fig. 4.9a, 4.9b and 4.9c, respectively. The area is nondimensionalized by
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𝑡𝑏𝑢𝑟𝑠𝑡𝜈𝑜𝑏

𝑉𝐿
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Figure 4.8 A log-log plot of the normalized burst time is plotted against ∆P
µo

√
b3ρ
γ . The data

collapse onto a single curve with a slope of about p = −5
4 .

isolating the exponential term in eq. 4.7 resulting in
Agas
Cgas

+ 1, and the x-axis is dimensional

elapsed time in seconds. For clarity only experiments using a 100 µm gap are shown although

all experiments have qualitatively similar results. A best fit line using eq. 4.7 is shown as a solid

line in the plot. In the plot the circles ( ), down-facing triangles (▼), squares (∎), up-facing

triangles (▲), and diamonds (⧫) correspond to gas pressures of 1.4, 2.8, 4.1, 5.5, and 6.9 kPa,

respectively. The marker labels in this figure are consistent with those in Fig. 4.11 and 4.13.

In Fig. 4.9d Agas, in m2, for the displacement of mineral oil with no PIB at 4.1 kPa in a 100

µm gap is plotted versus elapsed time in seconds using both the integral method described in

section 4.2.1 and the pixel counting method used in chapters 2 and 3.

Fitting the experimental Agas data to eq. 4.7 and extracting the exponential growth rate

provides the gas expansion rate ωgas which is plotted in Fig. 4.10. The y-axis is scaled with

(Re∗)2 and the x-axis is scaled with Bo∗ ⋅ (Re∗p)
2 like in eq. 4.14. The data span nearly two

decades in the x- and y-directions and collapse well according to PIB concentration. A best

fit line is plotted for each PIB concentration in Fig. 4.10 where each slope is the exponent m
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a) b) 

c) 

𝐴𝑔𝑎𝑠 

𝑚2  

∆𝑡 (𝑠) 

d) 

Figure 4.9 A semilog plot of
Agas
Cgas

+ 1 versus elapsed time is shown for PIB concentrations of

(a) 0 ppm, (b) 250 ppm and (c) 500 ppm each at the 100 µm gap. The curves are

fit using eq. 4, highlighting the exponential growth observed for all experiments. In

(d) gas areas determined using the pixel counting method from chapters 2 and 3

and the integral method described above are shown for 0 ppm PIB in a 100 µm gap

displaced at 4.1 kPa.
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Figure 4.10 A plot of the Reynolds number incorporating ωgas is shown. The data from each

concentration of PIB is fitted to a line whose slope is roughly 1.

from eq. 4.14 and m is 1.06, 1.08 and 1.08 for the 0, 250 and 500 ppm PIB data, respectively.

For the lowest Bond number the 250 and 500 ppm PIB experiments deviate slightly from the

fit at higher pressures.

The transient residual liquid film normalized by the gap height is plotted against elapsed

time normalized by the burst time in Fig. 4.11 for mineral oil experiments with no PIB in a

100 µm gap. Best fits using eq. 4.17 are shown as solid lines which agree fairly well with the

data, particularly at later times. Some data points at the earliest elapsed times are greater

than 1 likely due to errors caused by the very small gas areas at these times. The constant

Cfilm from eq. 4.17 resulting in the best fit of the data is plotted versus Ca∗p in the inset of

Fig. 4.11. The constant Cfilm has units of µm ⋅ s1/2 and is made dimensionless here by
√
ωgas
b .

Values for Cfilm vary between 20 ≤ Cfilm ≤ 40 µm ⋅ s
1
2 .

The film at ∆t
tburst

= 1 in Fig. 4.11 is taken as the quasi-equilibrium film thickness h∞. While

this is not a true equilibrium film Fig. 4.11 shows that the film is relatively stable, hence the

”quasi” qualifier. A plot of h∞
b is shown versus a modified capillary number Ca∗p in Fig. 4.12.
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Figure 4.11 The normalized transient residual film thickness is plotted against ∆t/tburst for

experiments with no PIB and a gap of 100 µm. The plots are fitted using eq. 4.17

and the constant Cfilm for every experiment is plotted against Ca∗p in the inset.

The film at ∆t/tburst = 1 is the quasi-equilibrium film thickness h∞.
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Figure 4.12 The quasi-equilibrium film thickness estimated at tburst is plotted in a log-log plot

against Ca∗p. Data for 50 µm gap experiments are omitted. The h∞ for 100 and

250 µm gap experiments are fitted with a single curve whose slope is 4
5 .

Data from 50 µm gap experiments are omitted here because those films are not sufficiently

stable at tburst. The data in the log-log plot is fit with a line whose slope is 0.79 or roughly 4
5 .

In Fig. 4.13 the fingering magnitude ξ is plotted versus elapsed time for each experiment.

In each experiment there is an initial period where ξ ≈ 0 i.e. the interface is essentially a

circle. The nine plots are organized by Bo∗ and PIB concentration where Bo∗ decreases from

top to bottom and PIB concentration increases from left to right. For one experiment with

Bo∗ = 1.68 × 10−2 and 250 ppm PIB the interfaces at ∆t = ts and ∆t = tburst are shown where

the arrows indicate to which data point they correspond. This clarifies the difference between

ξ ≈ 0 and ξ > 0.

The threshold value for ξ when fingering is apparent is ξ ≈ 0.09. The time when ξ ≈ 0.09 is

ts and at this time the maximum stable gas area As occurs. Some values for ts for 0 and 250

ppm experiments are shown along with tburst in Fig. 4.14 where the left-facing triangles (◂),

right-facing triangles (▸) and up-facing triangles (▲) correspond to Bond numbers of 7 × 10−4,

2.7 × 10−3 and 1.68 × 10−2, respectively. The x- and y-axis scaling is identical to that used in
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𝜉 𝜉 

Figure 4.13 The fingering magnitude, ξ, is plotted versus elapsed time. Data from

ts ≤ ∆t ≤ tburst are fitted with a linear curve whose slope is the instability growth

rate, ωξ. For the 250 ppm PIB experiment at 1.4 kPa and Bo∗ = 1.68 × 10−2 the

interface of the maximum stable area and the interface at tburst is shown where

the arrows indicate the data point to which they correspond.
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a) 

b) 

Figure 4.14 The time it takes for the instability to develop, ts, is plotted along with the bursting

time, tburst, for (a) 0 and (b) 250 ppm experiments using the same scaling from

Fig. 4.8. The tburst data is fit with a single curve and the ts data is fit according

to Bo∗. The x-axis is extended to show when the ts fits intersect with the tburst
fit.
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Figure 4.15 Images of the inner and outer interfaces for experiments in a 250 µm gap are

shown at time ts when the maximum stable gas area occurs (when ξ ≈ 0.09).
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Figure 4.16 The maximum stable gas area, As, is plotted against ∆P
µo

√
b3ρ
γ . Best fit lines

according to PIB concentration are included.

Fig. 4.8. The tburst data is fit with a single line and the ts data is fit according to Bo∗.

In Fig. 4.15 traces of the inner and outer interfaces are shown for some experiments in a

250 µm gap at ∆t = ts. These images represent interfaces when ξ ≈ 0.09 and Agas = As. In Fig.

4.15 pressure increases from top to bottom and PIB concentration increases from left to right.

The inner interface Γin and outer interface Γout is labeled in the top right and a scale bar is

provided in the bottom right.

Plots of As for all experiments are shown in Fig. 4.16 where As is normalized by b2 and the

x-axis is scaled similarly to Fig. 4.8. For over about 2 decades in the x-direction and nearly

two in the y-direction the data collapse somewhat according to PIB concentration. The data is

fit according to PIB concentration and the slopes of the best fit lines are -0.60, -0.61 and -0.80

for the 0, 250 and 500 ppm PIB experiments, respectively.

From ts ≤ ∆t ≤ tburst ξ increases roughly linearly with time. Therefore data on that domain

is fit with a linear line in Fig. 4.13 according to eq. 4.6 where the slope of this line is the

instability growth rate ωξ. This rate is then plotted in Fig. 4.17 versus Bo∗ ⋅ ∆p
µo

. There are
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Figure 4.17 Plots of the instability growth rate ωξ are shown separated by Bond number. In

each individual plot the width of the x-axis is two decades and the height of the

y-axis is 4 decades. For Bo∗ = 7 × 10−4 images of the interfaces at tburst are

included and correspond to the experiment to which they point.
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three distinct plots representing ωξ versus Bo∗ ⋅ ∆p
µo

in Fig. 4.17 where in each plot Bo∗ is

constant. In each of the three individual plots the total width of the x-axis is two decades and

the total height of the y-axis is 4 decades which allows for a visual comparison of the slopes of

each best fit line. Images of the interfaces at ∆t = tburst are shown in the Bo∗ = 7 × 10−4 plot

for a few experiments.

4.5 Discussion

The radial displacement of a liquid drop by a gas at constant pressure has clearly been

achieved for both Newtonian and shear-thinning regimes based on the fingering behavior shown

in Fig. 4.4-4.6. At the lowest pressure (1.4 kPa) in Fig. 4.4-4.6 the fingering regime appears

mostly Newtonian for each liquid i.e. the fingers are ”pedal-like” and new fingers develop

through ”tip-slitting” rather than ”side-branching” as shown in detail in Fig. 4.7. Increasing

the pressure introduces non-Newtonian side-branching behavior in the shear-thinning liquids.

This could be due to some transition where a critical Weissenberg number, Wi∗, is reached

where Wi∗ is defined as

Wi∗ = γ̇λ (4.18)

where γ̇ is the shear rate and λ is the relaxation time. A Newtonian liquid would effectively

have λ ≈ 0 and Wi∗ ≈ 0 for all γ̇, whereas a shear-thinning liquid would have Wi∗ > 0 as the

shear rate increases. While we do not have data on λ for the 250 and 500 ppm PIB liquids,

one can speculate that 0 < λ250ppm < λ500ppm. For low pressures γ̇ is low and Wi∗ is likely near

0. As the pressure, and therefore shear rate, increases then Wi∗ > 0 and the non-Newtonian

side-branching features begin.

The 500 ppm PIB experiments show the greatest amount of side-branching as would be

expected. The pressure at which non-Newtonian viscous fingering first appears is lower for 500

ppm PIB experiments than 250 ppm PIB experiments because the relaxation time for the 500

ppm PIB liquid is likely larger than the 250 ppm PIB liquid. The Newtonian liquid exhibits

almost no side-branching throughout all of the experiments; increasing the pressure for the
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mineral oil experiments results in more and thinner fingers with smooth sides.

Additional qualitative results can be pulled away from Fig. 4.4-4.6. The distance from the

gas inlet (marked by a ’+’) where the first fingers form is always greater for the Newtonian

experiments. This result is consistent with previous results (67). Also since the area of the

dotted circular fit is equal to Agas one can observe visually that the gas area at tburst is larger

in the Newtonian liquid for nearly every pressure in each gap, and then the 250 ppm PIB liquid

has a larger gas area than the 500 ppm PIB liquid. Therefore the displacement process is less

efficient in shear-thinning liquids.

Varying the gap spacing in Fig. 4.4-4.6 also affects the fingering patterns. There is a

noticeable lack of side-branching in the 250 µm experiments whereas the 50 µm non-Newtonian

experiments show the most side-branching.

The time it takes for the gas phase to burst out of the liquid drop, tburst, is plotted in Fig.

4.8 using the relation from eq. 4.1. All of the data collapse roughly onto a single curve for a

range and domain of multiple decades. The exponent p from the best fit is -1.21 or about −5
4 ,

yielding the relationship:

tburstνob

VL
= −0.056

⎡
⎢
⎢
⎢
⎢
⎣

∆p

µo

√
ρb3

γ

⎤
⎥
⎥
⎥
⎥
⎦

−
5
4

(4.19)

The exponent is a little smaller than the exponent of -1.38 found in previous work (7),

however the scaling for tburst has once again be shown to work very well. Consistently across

the two decades of ∆p
µo

√
b3ρ
γ the experiments with PIB burst slightly faster than the Newtonian

experiments.

Previous work with constant pressure radial displacement in a Hele-Shaw cell has shown

that the gas phase expands exponentially with time with and without the viscous fingering

instability (8). Each experiment in this chapter, be it Newtonian or shear-thinning, shows

exponential growth in the gas area according to eq. 4.7. Figure 4.9 clearly shows this behavior

for experiments in a 100 µm gap, but the same behavior is observed in 50 and 250 µm gaps.

The data fits very well with eq. 4.7.

The gas expansion rates, ωgas, from eq. 4.7 are plotted in Fig. 4.10 using (Re∗)2 versus the
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dimensionless group Bo∗ ⋅ ρb
2

µo
(

∆p
µo

). The data collapse well according to PIB concentration. The

exponent from eq. 4.14 is between 1.06 and 1.08 which is nearly unity. Flooring the exponent

to 1 and simplifying eq. 4.14 results in the expression

ωgas = Cω ⋅Bo
∗
⋅
∆p

µo
(4.20)

where Cω = 0.006, 0.011 and 0.013 for the 0, 250 and 500 ppm PIB liquids, respectively. The

exponent being nearly unity suggests ωgas ∼
∆p
µo

. For 250 and 500 ppm PIB experiments at

Bo∗ = 7× 10−4 it is clear that ωgas has a greater dependence on ∆p
µo

than suggested by eq. 4.20

while the Newtonian expansion rates remain ωgas ∼
∆p
µo

. At the two higher Bond numbers ωgas

scales more similarly for all experiments. The shifting up of the shear-thinning experiments

in Fig. 4.10 may be due to choosing the 1 Hz viscosity; the shear rates undoubtedly vary

with pressure and gap height and thus the effective viscosity in the shear-thinning liquids will

change, but it would be difficult to determine local shear rates during the displacement process.

Previously an exponential model for the transient residual film thickness h(∆t) was pro-

posed in chapter 3. In this chapter a power law relationship between h(∆t) and elasped time

yielded the best fits. Initially the relationship h(∆t) = Cfilm (∆t)nfilm was fit to the data

whereupon the the exponent nfilm was found to be about −1
2 for all experiments. The coef-

ficient Cfilm varies with pressure and the polymer concentration so the data was fit using eq.

4.17. This resulted in good fits of the data as shown in Fig. 4.11. The values for Cfilm range

between 20 and 40 µm ⋅ s
1
2 and are shown in the inset of Fig. 4.11.

The residual film value at tburst, denoted h∞, is taken as the quasi-equilibrium film thickness.

For experiments in the 50 µm gap the film was not sufficiently stable at tburst i.e. dh
dt ≪ 0 so

those experiments are excluded from the residual film analysis. The equilibrium film is plotted

in Fig. 4.12 versus Ca∗p and scales roughly with ∆p0.4. The best fit curve in Fig. 4.12 is defined

by

h∞
b

= −2.21
⎡
⎢
⎢
⎢
⎣

µo
γ

√
∆p

ρ

⎤
⎥
⎥
⎥
⎦

4
5

(4.21)

In general experiments with less polymer added resulted in slightly larger film thicknesses.
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Previous studies on the residual film resulting from two-phase displacement have found that

the film scales with Ca
2
3 (17; 64), however the capillary number used here is of course defined

differently.

In Fig. 4.13 the fingering magnitude ξ, as defined in eq. 4.6, is plotted versus elapsed time.

There is always an initial period where Agas expands as a circle and the interface is stable. This

initial period of stable displacement is significantly longer when the gap height is increased.

In Fig. 4.14 the length of this initially stable period, ts, is plotted along with tburst using the

same scaling. It is clear from both Fig. 4.14a and 4.14b that, based on the best fits, there

will be some combination of system parameters where ts and tburst will intersect. It is then

theoretically possible to use Fig. 4.14 to predict what pressures, drop volumes, etc. will yield

stable displacement all the way to tburst.

Images of the interfaces in a 250 µm gap when the maximum stable gas area occurs are

shown in Fig. 4.15. These interfaces in Fig. 4.15 represent interfaces when ξ ≈ 0.09, the

chosen viscous fingering threshold. It is clear that these interfaces are mostly circular but show

the very first signs of viscous fingering. It is also clear visually that the maximum stable gas

areas are significantly larger for the Newtonian experiments than the experiments with PIB in

Fig. 4.15. The maximum stable gas areas As for all experiments are plotted in Fig. 4.16 and

show that the shear-thinning experiments always have smaller maximum stable gas areas. The

maximum stable area scales roughly with ∆p−
2
3 . It is important to note that during the stable

displacement periods the gas area is expanding exponentially e.g. the exponential growth is

not exclusive to the fingering instability.

Once ξ > 0.09 it is clear that ξ grows linearly with time for most experiments in Fig.

4.13. Zhao and Maher reported a similar linear trend for a linear Hele-Shaw cell (70). A few

experiments in Fig. 4.13 deviate slightly from the linear trend but these are exceptions. The

fact that ξ grows linearly on the domain ts ≤ ∆t ≤ tburst means literally the length of the actual

liquid-gas interface increases linearly with respect to the radius of the corresponding stable

case Rfit, and since Rfit grows exponentially with time then ξ grows as the product of an

exponential and linear function of time. Using Rfit(∆t) =
√

Agas(∆t)
π along with eq. 4.6 and

eq. 4.7 on ts ≤ ∆t ≤ tburst results in an expression for the length of the interface during both
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the stable and unstable periods:

L(∆t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2
√
π [Cgas (e

ωgas∆t − 1)]
1
2 ∶ 0 ≤ ∆t < ts

2
√
π [Cgas (e

ωgas∆t − 1)]
1
2 [ωξ (ts −∆t) + 1] ∶ ts ≤ ∆t ≤ tburst

(4.22)

where ωξ is the viscous fingering propagation rate from eq. 4.6. The rate ωξ is found by taking

the slopes of the linear fits in Fig. 4.13. In Fig. 4.17 ωξ is plotted against Bo∗ ⋅ ∆p
µo

which

provides the relation:

ωξ = Cξ [Bo
∗
⋅
∆p

µo
]

n

(4.23)

The slopes of the best fits of the data in Fig. 4.17 according to eq. 4.23 vary with Bo∗,

so the data is separated for clarity. At Bo∗ = 7 × 10−4 n = 1.86, 2.41 and 2.87 for the 0,

250 and 500 ppm PIB experiments, respectively. At this Bo∗ the instability grows faster

with increasing PIB, and experiments with PIB are more dependent on ∆p
µo

. Traces of the

corresponding experimental interfaces are shown for some of the Bo∗ = 7× 10−4 experiments to

highlight differences in the fingering instabilities. As Bo∗ increases ωξ scales with ∆p perhaps

more similarly for Newtonian and shear-thinning experiments. For Bo∗ = 2.7 × 10−3 n = 1.98,

1.82 and 2.39 for the 0, 250 and 500 ppm PIB experiments, respectively. For Bo∗ = 1.68× 10−2

n = 1.42, 1.44 and 1.15 for the 0, 250 and 500 ppm PIB experiments, respectively. For all Bo∗

and all pressures the viscous fingering instability grows faster for shear-thinning experiments

than for Newtonian experiments.

4.6 Conclusion

The displacement of a finite liquid drop of both Newtonian mineral oil and non-Newtonian

mineral oil with dissolved polyisobutylene has been studied by injecting air at a constant

pressure into the drop while confined in a Hele-Shaw cell. Qualitative results show that at

low pressures the viscous fingering behavior is similar for both Newtonian and shear-thinning

liquids. Increasing the pressure above some critical value introduces the characteristic side-

branching features in the shear-thinning liquids. Previous work has studied viscous fingering
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in the context of varying the Weissenberg number, Wi∗, where a critical Wi∗ typically results

in a transition from Newtonian to non-Newtonian behavior in non-Newtonian liquids (24). We

have certainly observed a transition, although without data on the relaxation times for PIB in

mineral oil it is impossible to attribute the transition to a specific Wi∗. Regardless some clear

qualitative trends occur in Fig. 4.4-4.6:

i) there is a critical gas pressure above which shear-thinning liquids exhibit side-branching as

the primary growth pattern as opposed to Newtonian tip-splitting; increasing the gas pressure

further increases the occurrence of side-branching in shear-thinning liquids.

ii) the distance from the gas inlet from which viscous fingering begins is significantly smaller

for shear-thinning liquids.

iii) increasing the gap spacing reduces side-branching (non-Newtonian effects) and increases

the critical gas pressure for non-Newtonian effects to become present.

The time it took for the gas phase to escape the liquid drop, tburst, was measured and was

found to fit well to the power law relationship in eq. 4.19. The exponent in eq. 4.19 is −5
4

which is a little smaller than the exponent from chapter 2 which was -1.38. The exponential

increase in the gas area Agas with time has again been observed just like in chapter 2 and 3.

The exponential behavior was observed in both Newtonian and non-Newtonian regimes. As

shown in Fig. 4.13 there is an initial period where the displacement is stable i.e. no viscous

fingering is present. Even during this period Agas increases exponentially with time. The gas

area expansion rate ωgas was found to fit well to the relationship in eq. 4.14 where the expo-

nent is between 1.06 and 1.08. The following conclusions on the gas area expansion can be made:

iv) the time it takes for the gas phase to burst through the liquid drop decreases with increasing

pressure, gap height or viscosity, and increases with increasing volume.

v) Agas(∆t) increases exponentially with time for both Newtonian and shear-thinning liquids

and with and without viscous fingering.

vi) the exponential gas area expansion rate from eq. 4.7 goes roughly like ωgas ∼
∆p
µo

.
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In chapter 3 an exponential fit was attempted for the transient residual film thickness. In

this chapter a power law model was attempted with good fits as shown in Fig. 4.11. The

fits work particularly well at later times; the power law model naturally has an asymptote

at ∆t = 0 so it is impossible to fit the first few data points. When applying the power law

model in eq. 4.17 it was found that the exponent nfilm was roughly −1
2 for all experiments,

suggesting a diffusion-like process. With the exponent fixed values for Cfilm were found be-

tween 20 ≤ Cfilm ≤ 40 µm ⋅ s
1
2 . Then the film at tburst was taken as the quesi-equilibrium film

thickness which was fit to eq. 4.21. In that relationship it follows that h∞ ∼ ∆p0.4. In summary:

vii) the transient residual film forms according to ∆t−
1
2 .

viii) the quasi-equilibrium film thickness at tburst goes like h∞ ∼ ∆p0.4.

A new method for quantifying the viscous fingering instability has been introduced resulting

in the fingering magnitude, ξ. This quantity was able to highlight two distinct displacement

regimes: an initial stable or circular displacement from 0 ≤ ∆t ≤ ts where ξ < 0.09, and an unsta-

ble displacement with viscous fingering from ts < ∆t ≤ tburst. At elapsed time ts the maximum

stable gas area occurs and it was found that the Newtonian experiments always had larger As

than the shear-thinning experiments. In the viscous fingering period ξ increases linearly with

time, so during this period the slope of the best fit is theinstability growth rate ωξ from eq.

4.6. Values for ωξ could be found for both Newtonian and non-Newtonian experiments and

ωξ was always lower for the Newtonian experiments than for the shear-thinning experiments.

At the lowest Bo∗ the shear-thinning liquids had a greater dependence of ωξ on ∆p, and as

the gap height increased the dependence of ωξ on ∆p became similar for both Newtonian and

shear-thinning experiments. Because ξ is a relative measure of the actual liquid-gas interface L

to the corresponding stable radius Rfit described in section 4.2.2 and Rfit grows exponentially

with time, L grows as the product of an exponential and linear function of time. Then the

length of the liquid-gas interface could be described as a function of Cgas, ωgas, ωξ and ∆t in

eq. 4.22. In summary:
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ix) all experiments exhibit an initial stable displacement period followed by viscous fingering

until tburst.

x) the maximum stable gas area As is always larger for Newtonian liquids compared to shear-

thinning liquids.

xi) the fingering magnitude ξ increases linearly with time and L increases as the product of an

exponential and linear function of time.

xii) the instability growth rate ωξ is always smaller for Newtonian experiments.

xiii) ωξ has a significantly greater dependence on ∆p for shear-thinning experiments in a 50

µm gap compared to Newtonian experiments.
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CHAPTER 5. GENERAL CONCLUSION AND FUTURE WORK

5.1 General conclusion

In this thesis the constant-pressure gas-driven displacement of a finite liquid drop in a

radial Hele-Shaw was studied. In chapter 2 the problem was studied using air to displace a

water-glycerol mixture. This paper, originally published in 2011, first showed the exponential

expansion of the gas phase with time as it displaced the liquid phase. Also a first attempt at

estimating the film thickness in a finite drop in the presence of viscous fingering was made.

Chapter 3 continued the work from chapter 2 by attempting to observe an interfacial chemical

reaction in a CO2 - Ca(OH)2(aq) system. Improvements in the analysis techniques allowed for

an estimation of the film formation rate as part of an exponential model.

It is in chapter 4 that some great improvements were made in the analysis process. Improved

image analysis allowed for the liquid-gas interfaces to be traced. While before areas were

measured by counting pixels within a region, now an integral method using the Kelvin-Stokes

theorem could be used to calculate the area based on the liquid-gas interface. It was also possible

to measure the length of the interface. This led to the new fingering magnitude quantity. This

new quantity is a novel way to quantify the viscous fingering instability across very different

fingering patterns.

There is a seemingly infinite number of projects that can stem from this relatively simple

experiment. A couple future projects based on the constant pressure displacement problem are

briefly described in the next sections.
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5.2 Future work

5.2.1 Potential flow analysis for stable radial displacement

In chapters 2-4 the constant pressure radial displacement of a liquid in a Hele-Shaw cell

has shown that the displaced area Agas(t) increases exponentially with time. This result

was reached by assuming an empirical relationship. As stated before the constant pressure

system makes an analytical solution difficult particularly in the presence of the viscous fingering

instability. However some experiments in chapter 3 under low pressure with low viscosity liquid

have resulted in very little viscous fingering while still exhibiting an exponential increase in Agas.

This special case of the stable displacement can potentially be described analytically using a

potential flow analysis.

Consider the constant-pressure radial displacement problem described throughout this the-

sis. For an incompressible and irrotational flow the continuity equation for the gas phase is

1

r

d

dr
(r
dφ

dr
) = 0 (5.1)

where φ is the velocity potential φ = dur
dr . Since there is no pressure gradient in the gas phase

an interfacial stress balance at the liquid-gas interface can be used to find a form for dur
dr . The

stress balance at the interface is n ⋅∥σ∥ = γκ ⋅n where σ = −P I+τ , τ = µ[∇u+(∇u)T ] and ∥∗∥

denotes a jump across the interface. Along the gas side of the interface a commonly imposed

boundary condition is zero shear stress or dur
dz = 0 which implies that the tangential component

of the interfacial stress is negligible. Therefore the normal component of the stress balance

will be used, n ⋅ ∥σ∥ ⋅ n = γκ. The only nonzero term in ∇u is dur
dr and to satisfy continuity

dur
dr ∣L = dur

dr ∣g, so the stress balance can be written

(−PL + Pg) + 2(µL − µg)
dur
dr

= γκ (5.2)

The liquid viscosity is much larger than the gas viscosity such that
µg
µL

≪ 1. Then, dividing the

above equation by µL and subbing in ∆P yields
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−∆P

µL
+ 2

dur
dr

=
γκ

µL
(5.3)

The pressure contribution from the curvature of the interface depends on both the curvature

in the r-plane and the curvature in the z-plane:

γκ = γ (
1

b − h̄
+

1

ar
) (5.4)

where ar is the radius of curvature in the r-plane at a given point along the interface. The

contribution from γ
ar

is only important when ar ∼ b which is only at very early elapsed times,

so that can be neglected. The contribution from curvature in the z-plane, γ
b−h̄

, can dominate

when h̄ → b. It has been shown that for low pressures, e.g. ∆P = O(
γ
b ), the residual film can

range between 0.1b ≤ h̄ ≤ 0.5b indicating this pressure contribution cannot be neglected and

dur
dr

=
1

2µL
(∆P −

γ

b − h̄
) (5.5)

Inserting this into eq. 5.5 yields

(
2µL

∆P −
γ
b−h̄

)
dr

dt
= r (5.6)

where dr
dt = ur at the interface. Integrating eq. 5.6 with respect to time and using r(0) = ain

where ain is the gas inlet radius results in:

r(t) = aine
ωot (5.7)

where ωo =
2µL

∆P− γ
b−h̄

. Then the area of the stable circular displaced area is Agas(t) = π[r(t)]
2 or

Agas(t) = Cgase
2ωot (5.8)

where the constant Cgas is identically the cross sectional area of the gas inlet π(ain)
2. This

solution is expected to be valid only when ∆P = O(
γ
b ), requiring very low pressures. While this

analytical solution is currently a work in progress, the fact that an exponential solution is found

is promising since throughout this thesis the gas area has been found to grow exponentially
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𝑡𝑠 (𝑠) 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧) 

Figure 5.1 The time it takes for the instability to devlop, ts, is plotted versus the pulsing

frequency in Hz. The maximum pressure is 0.2 psi (1.4 kPa) and the black, gray

and unfilled markers correspond to 0, 250 and 500 ppm experiments, respectively.

with time. In the future we hope to complete some radial Hele-Shaw experiments at these

very low pressures with liquids of varying viscosity to compare the experimental results to this

solution. The solution will also be expanded to include an exponential or power law model for

the film thickness as has been observed in chapter 3 and 4.

5.2.2 Pulsed-pressure displacement

A lot of recent work has dealt with trying to control or eliminate the viscous fingering

instability such as by using elastic plates in a Hele-Shaw cell (33) and introducing gradients

in the gap height (34). In a pressure driven system the use of a pulsed pressure approach i.e.

cycling between ∆p = pgas and ∆p = 0 could have the effect of stabilizing the interface without

needing to alter the geometry of the system.

Some preliminary experiments have been completed using mineral oil with and without

PIB in a 100 µm gap. In these experiments a procedure like that used in chapter 4 was used.



www.manaraa.com

88

In Fig. 5.1 the time it takes for the instability to develop, ts, is plotted versus the pulsing

frequency. The drop volume is 200 µL and the maximum pressure is 0.2 psi (1.4 kPa). The

pulsing frequencies shown are 0.1, 0.5 and 1 Hz with a duty cycle of 20%. The ts for the 0 ppm

liquid remains almost constant at about 40 s for each frequency. However it is clear that as the

frequency increases the 250 and 500 ppm liquids remain stable for a longer period of time. In

fact at 1 Hz the 500 ppm experiment remains stable longer than the Newtonian experiment.

This is a very interesting preliminary result because in chapter 4 the non-Newtonian liquids

always became unstable earlier than the Newtonian liquid. As the frequency increases beyond

1 Hz and becomes almost indistinguishable to a constant pressure injection there will likely

be a point at which the non-Newtonian interfaces become unstable earlier than the Newtonian

ones again. Therefore there may exist some optimum frequency for the stability of the shear-

thinning liquids. In the future experiments at higher frequencies will be performed and other

liquids will be used such as polyacrylamide solutions.
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